[ Register ]

### Question #: 4733

Question: what are the motor setting for the greenbull

Current Solution

In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

The steps per inch is dependent on the microstepping:
Steps/Inch for the x and y
Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps
Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches
steps/inch = 3200 / 3.5 = 914.28
This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

Velocity:
Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

Acceleration:
Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in
Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in
Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

4th axis

Respond:

### Other Possible Solutions to this Question

• While motor tuning what are the recommended steps per inch, velocity, and acceleration for the GreenBull CNC?

In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

The steps per inch is dependent on the microstepping:
Steps/Inch for the x and y
Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps
Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches
steps/inch = 3200 / 3.5 = 914.28
This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

Velocity:
Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

Acceleration:
Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in
Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in
Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

4th axis

• WHAT ARE THE DIMENSIONS FOR GREENBULL TABLE?

Actual table dimension: 4'x8' is 56.078"x 121.50" (the overhang in the illustrations should be 3/4" thick)
To determine the frame dimensions, first consider using the frame height shown of almost 3' (2.86'). The width of the frame should be 4" narrower than the dimension from rail edge to rail edge (6X rail to rail is 80.078"). This will provide a 2" overhang on both sides (4X frame width should be 56.078").
The length of the frame should be 4" shorter than the desired length of the rails to provide a 2" overhang on both ends. The travel length will be 20" shorter than the rail length due to the space occupied by the gantry sides.
Two long pieces of 3/4" material will need to be placed on top of the frame with the 2" overhang on the sides and the end. These long strips of material will receive the rails and the chain mounts on the ends.

https://www.buildyourcnc.com/Item/cnc-machine-greenBull-v4-4X

WHAT ARE THE DIMENSIONS FOR GREENBULL TABLE?

• WHAT ARE THE SHIPPING DIMENSIONS FOR GREENBULL?

76" X 40" X 26"
230 LBS

WHAT ARE THE SHIPPING DIMENSIONS FOR GREENBULL?

• What are the overall dimensions for a greenbull 5x10

The overall size (Foot Print(Roughly)) is:
W: 90" x L: 142.5" x H: 35"

Height:
Is from table top to highest point and not from the floor to highest point.(H for the 5X/6X can vary in size due to the height of the table/frame, since it can be adjusted to the specific needs of the customer)).

What are the overall dimensions for a greenbull 5x10

• The plans/hardware option for the greenBull includes what?

The plans/hardware/electronics/mechanical includes everything but the wood structural components that can be cut by the customer. This plans/hardware option includes all of the electronics, like motors, drivers, controller, and all of the cables and wires to connect all of the electronics together. The mechanical components include shafts, couplings, linear rails, bearing blocks, sprockets, lead screws, etc. The hardware consists of all of the screws nuts, insert nuts, cross dowels, etc, to assemble all of the structural, mechanical, and electronics together.

The plans/hardware option for the greenBull includes what?

• what are the table dimensions for 4' by 8' heavy duty greenbull?

Actual table dimension: 4'x8' is 56.078"x 121.50" (the overhang in the illustrations should be 3/4" thick)
To determine the frame dimensions, first consider using the frame height shown of almost 3' (2.86'). The width of the frame should be 4" narrower than the dimension from rail edge to rail edge (6X rail to rail is 80.078"). This will provide a 2" overhang on both sides (4X frame width should be 56.078").
The length of the frame should be 4" shorter than the desired length of the rails to provide a 2" overhang on both ends. The travel length will be 20" shorter than the rail length due to the space occupied by the gantry sides.
Two long pieces of 3/4" material will need to be placed on top of the frame with the 2" overhang on the sides and the end. These long strips of material will receive the rails and the chain mounts on the ends.

https://www.buildyourcnc.com/Item/cnc-machine-greenBull-v4-4X

what are the table dimensions for 4' by 8' heavy duty greenbull?

• What are the table dimensions for the greenBull so I can build it.

Actual table dimension: 4'x8' is 56.078"x 121.50" (the overhang in the illustrations should be 3/4" thick)
To determine the frame dimensions, first consider using the frame height shown of almost 3' (2.86'). The width of the frame should be 4" narrower than the dimension from rail edge to rail edge (6X rail to rail is 80.078"). This will provide a 2" overhang on both sides (4X frame width should be 56.078").
The length of the frame should be 4" shorter than the desired length of the rails to provide a 2" overhang on both ends. The travel length will be 20" shorter than the rail length due to the space occupied by the gantry sides.
Two long pieces of 3/4" material will need to be placed on top of the frame with the 2" overhang on the sides and the end. These long strips of material will receive the rails and the chain mounts on the ends.

https://www.buildyourcnc.com/Item/cnc-machine-greenBull-v4-4X

What are the table dimensions for the greenBull so I can build it.

• What are the toggle switch settings on the stepper motor drivers for the .5 in. lead screw 10 tpi 2 turns per inch? Thankyou!

On the top of the stepper motor drivers is a grid with the appropriate toggle switch positions for the lead screw being used. If it is 2 turns per inch, the proper toggle switch positions would be 01101110. Try this and see if it works.

• What are the dipswitch settings for the drivers?

blueChick:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackToe:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackFoot:

X-axis
“CW8060 (6.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

greenBull:

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in

Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

Scratch-Build / Book-Build Kit:

X-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 1600 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

What are the dipswitch settings for the drivers?

• My question about motor tuning for the blacktoe in Mach 3 was for the aceleration and velocity settings what are the recomended settings

In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

The steps per inch is dependent on the microstepping:
Steps/Inch for the x and y
Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps
Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches
steps/inch = 3200 / 3.5 = 914.28
This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

Velocity:
Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

Acceleration:
Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in
Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in
Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

4th axis

• what are all the settings i'd need for mach3 for use with a blackfoot and a redfly?

These are the recommend values(default) for our blackFoot CNC machine, the acceleration and velocity can be adjusted as high as the motor can rotate without stalling! Suggested increment's will be by 10's.

blackFoot:
X-axis
“CW8060 (6.0A) Driver”
Set to 1/16 Microstep, 5.43A
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in, Velocity 400.02, Acceleration 4
Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in, Velocity 400.02, Acceleration 4
Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in, Velocity 79.98, Acceleration 5

how can we tuning the CNC motor

what are all the settings i'd need for mach3 for use with a blackfoot and a redfly?

• What are the dimension of the greenBull 4x with dual laser/spindle head?

The shipping weight (with crate) of the greenBull 4X CNC machine with the dual laser/spindle head is 230 lbs. The overall dimensions are: 76"x36"x27". The crate is typicall send via freight.

What are the dimension of the greenBull 4x with dual laser/spindle head?

• What will be the amount of cable carrier that I will need for a greenBull 5x?

To determine the length of cable carrier you will need for a single axis, measure the axis travel of your machine, divide this by 2 and add 12 inches. The radius of the curl is 2 inches.
The amount of cable carrier needed for the CNC machines that we provide will be:

blueChick: Total 4 Ft

blackToe: Total 5 Ft

blackFoot: Total 8 Ft

greenLean: Total 8 Ft

greenBull 5x: Total 10 Ft

greenBull 6x: Total 11 Ft

What will be the amount of cable carrier that I will need for a greenBull 5x?

• WHAT SETTINGS DO I USE IN MACH3 MOTOR TUNING?

blueChick:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackToe:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackFoot:

X-axis
“CW8060 (6.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

greenBull:

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in

Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

Scratch-Build / Book-Build Kit:

X-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 1600 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

WHAT SETTINGS DO I USE IN MACH3 MOTOR TUNING?

• I'm building my own machine using your motors and drivers. What is the best dip switch settings for the 3.0 amp drivers powering the 425 oz motors

The settings that you will use for your 3.0 amp driver to properly power and turn your 425 oz-in stepper motor will cheifly depend on your application and the mechanical parts you are using on your machine. In all circumstances, the amp setting for the stepper motor (according to the datasheet) should be 2.8 amps. Use the closest setting on the driver without going over.

Here is a good rule of thumb for the microstepping which will correspond to the resolution, but wil also affect torque. You always want to try to achieve the best torque and resolution for the axis you are moving but go with the lowest microstepping possible. In cases where there is mechanical advantage, like a lead screw scenario, where for each motor revolution, the axis move a very small amount, you will want a very low microstep value. This is because the mechanical configuration will provide most of the finer resolution and you will not need the microstepping to assist in this. Increase the microstepping only in conditions where the axis is not moving smooth enough, or where there is a mechanical disadvantage. A mechanical disadvantage would be where the stepper motor is causing a great amount of movement in the axis and the resolutions suffers from this condition. Increase the microstep value up to your desired resolution, but don't go over since the torque of the motor will decrease.

• WHAT MOTOR TUNING SETTINGS?

blueChick:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackToe:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackFoot:

X-axis
“CW8060 (6.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

greenBull:

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in

Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

Scratch-Build / Book-Build Kit:

X-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 1600 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

WHAT MOTOR TUNING SETTINGS?

• What settings does I use for controlling the spindle in StepCon/Linuxcnc?

LinuxCNC has excellent documents; however, I would like to offer our help in case you don't understand the information on that page. So, please use this FAQ (Question #: 13233) to state your questions by submitting additional information below.

The LinuxCNC spindle control page is found here: http://linuxcnc.org/docs/html/examples/spindle.html

After reading the LinuxCNC page my first questions would be can the spindle be controlled by PWM signal? Also, what pin on the parallel port would I set to Spindle Enable and FRW?

To connect your computer to the VFD, use a USB to RS-485 interface. RS-485 is just a serial interface protocol that uses standard 0 to +5 voltage TTL signal levels for communication (as opposed to RS-232 which uses -12v and +12 for signal level changes).

Get a high quality interface to reduce any issues during the process. The VFD should have two terminals labeled RS+ and RS-. The USB to RS-485 adapter should have this labeled on it as well so the connections should be relatively straight forward.

In the VFD parameters:
PD001: 2 to accept RS485 commands
PD002: 2 to accept frequency comands
PD163: 1 to RS485 slave address:1
PD164: 1 RS485 baud rate 9600
PD165: 3 8bit, no parity, 1 stop bit

Make sure LinuxCNC is also set accordingly:

The PIN14 and PIN16 in the stepconf wizard should be set to unused because you don't want LinuxCNC to be outputting unnecessary signals.

In the options step of the stepconf wizard:
- Check the Include Halui user interface component.
- Check the Include custom PyVCP GUI panel.
- Check Spindle speed display

You will want to edit the custom.hal text file located in the folder that was created from the stepconf wizard. Add these following lines:
loadusr -Wn vfd hy_vfd -n vfd -d /dev/ttyUSB0 -p none -r 9600
net spindle-cmd-rpm-abs => vfd.speed-command
net spindle-cw motion.spindle-forward => vfd.spindle-forward
net spindle-ccw motion.spindle-reverse => vfd.spindle-reverse
net on motion.spindle-on => vfd.spindle-on

The dev folder in linux is typically used for interfacing devices and peripherals to the computer as these devices are communicated by simple memory addresses and these files are linked directly to these addresses.

Under the custom_postgui.hal file, change this line:

from: sets spindle-at-speed true
to: net spindle-at-speed => cfd.spindle_at_speed

setp vfd.enable 1

When you start LinuxCNC, you will a spindle section with the reverse and forward buttons, a stop button and - and + buttons. Use these buttons to conform that the spindle is functioning properly. The spindle speed indicator in LinuxCNC will show the spindle speed and you can confirm that this is equal to the speed indicated on the VFD.

Credit for this helpful information goes to:

Additional information was also added by us to provide a better understanding.

What settings does I use for controlling the spindle in StepCon/Linuxcnc?

• WHAT MATERIALS CAN THE GREENBULL MACHINE CUT? LASER ETCH?

The Greenbull machine can cut a very wide variety of materials ranging from foam to aluminum. We recommend the use of our 2.2kW spindle to allow the greatest flexibility. Aside from that, the most important thing is to use an appropriate end mill for the material you are cutting and to use appropriate speeds and feed rates.

BYCNC Response:
Our 40W laser can cut up to about 1/4" materials ranging from wood and acrylic down through lighter materials such as leather, fabric, foam, etc. Speed and final cut are greatly enhanced by an air assist upgrade. We also offer an 80W laser which has approximately twice the capabilities of the 40W.

WHAT MATERIALS CAN THE GREENBULL MACHINE CUT? LASER ETCH?

• WHAT DOES THE GREENBULL KIT INCLUDE AND DO I NEED TO INCLUDE?

The greenBull 4X comes with all of the components and electronics to assemble the gantry of the machine. You will need to build the table. We provide the rails and roller chain for the X-axis (along the length of the table for full 8 feet of travel). You will need to provide some wire to connect the electronics and a computer to run the machine. You will also need to purchase the software that you will need to run the machine that matches how you will apply the machine. We suggest the mach3 control program. The CAM program is up to you as there are many options out there.

WHAT DOES THE GREENBULL KIT INCLUDE AND DO I NEED TO INCLUDE?

Get Help with:
This Product
Orders
Tech Support
Sales
This Product
Order Query
Tech Support
Sales