[ Log In ]
[ Register ]
NEW: CNC Router PLANS Available for all of our Newest CNC Models!! Click here to "Design Your CNC".

Question #: 14260

Question: How can I have two stepper motors on one axis

Current Solution

Yes, you can use 2 motors in the same axis output, however you will still need a driver for that motor! Also depending on the orientation on which you mount the motor you might have to invert the direction of the motor, and that will be simple by swapping the A+,A-, to the B+,B- locations and vice versa, from the driver to the motor wiring.

Also you can run a slave motor using another axis on the board, and setting it up in the Planet-CNC settings.

Planet-CNC/File/Settings/Axes, here you will enter 3 in the Number of Axes location, and then change the Function of the Axis 4 to Slave 1. There you will have the 4th axis or A-axis be a slave for the x-axis.
Slave 1 - X-Axis
Slave 2 - Y-Axis
Slave 3 - A-Axis
Slave 4 - B-Axis
Etc...

Respond:

Other Possible Solutions to this Question

  • How do I wire two stepper motors for one axis?

    Yes, you can use 2 motors in the same axis output, however you will still need a driver for that motor! Also depending on the orientation on which you mount the motor you might have to invert the direction of the motor, and that will be simple by swapping the A+,A-, to the B+,B- locations and vice versa, from the driver to the motor wiring.

    Also you can run a slave motor using another axis on the board, and setting it up in the Planet-CNC settings.

    Planet-CNC/File/Settings/Axes, here you will enter 3 in the Number of Axes location, and then change the Function of the Axis 4 to Slave 1. There you will have the 4th axis or A-axis be a slave for the x-axis.
    Slave 1 - X-Axis
    Slave 2 - Y-Axis
    Slave 3 - A-Axis
    Slave 4 - B-Axis
    Etc...

    Click the link to respond:
    How do I wire two stepper motors for one axis?

  • Can I run two stepper motors off the same axis output on the USB controller?

    Yes, you can use 2 motors in the same axis output, however you will still need a driver for that motor! Also depending on the orientation on which you mount the motor you might have to invert the direction of the motor, and that will be simple by swapping the A+,A-, to the B+,B- locations and vice versa, from the driver to the motor wiring.

    Also you can run a slave motor using another axis on the board, and setting it up in the Planet-CNC settings.

    Planet-CNC/File/Settings/Axes, here you will enter 3 in the Number of Axes location, and then change the Function of the Axis 4 to Slave 1. There you will have the 4th axis or A-axis be a slave for the x-axis.
    Slave 1 - X-Axis
    Slave 2 - Y-Axis
    Slave 3 - A-Axis
    Slave 4 - B-Axis
    Etc...

    Click the link to respond:
    Can I run two stepper motors off the same axis output on the USB controller?

  • Can I have two motors and drivers on a single axis?

    Yes, you can have two drivers connected to a single axis. If you want the two drivers/motors to work as a single, more concerted pair, then I would suggest connecting the two drivers to a single step pulse and direction signal.

    That is to say:
    driver 1 and driver 2 have wires connecting from the CP terminals of the drivers to a single step terminal on the interface board (USB or parallel breakout board), and the CW terminals of the drivers connected to a single direction terminal on the interface board.

    If the motors need to spin in the opposite directions, simply reverse one of the the motor A B coil connections (i.e. wires that would go to A+ and A- is connected to the B+ and B-, and the same with the B+ and B- to the A+ and A-). You can alternatively resolve this mechanically if desired.

    Click the link to respond:
    Can I have two motors and drivers on a single axis?

  • From the BOB how can I reverse one of my steppers - i'm running 2 on my Y Axis

    When trying to use two motors on a single axis, there is a multitude of methods to get them to work together.
    First: There should always be a slave option in the CNC control software(mach 3/ planet-cnc/emc2/etc.), this will be the easiest way to make the dual motor configuration work. However some adjusting might be necessary due to the orientation of the motor when mounting it on the opposite side of the CNC machine.(Mach3/config/slaveaxis, planet-cnc/file/settings/axes).

    Secondly: Dealing with our interface boards(maybe third-party as well), you can have two drivers going to the same axis on the interface board. Which then will have one motor per driver, this will use the same motion and control from the (ex.) x-axis to driver two motors. However some adjusting might be necessary due to the orientation of the motor when mounting it on the opposite side of the CNC machine.

    Adjusting of the driver or motor wires, can be done separate from the control software with the use of a hex inverter, that can be used and to switch the signal (ex. takes a low signal and brings it high, and takes a high signal and brings it low) of one of the motors, to run the same as the other motor.
    There is also another method of inverting the orientation of the motors movement without the use of a hex inverter. This method you will have to wire the coil's of the motors oppositely of what is recommended for one of the motors. Example, you will wire our Nema 24 as follows(recommended): A+ - red/blue, A- - yellow/black, B+ - white/brown, B- - green/orange. However to run another motor with with it you will have to switch the A/B connections to: A+ - white/brown, A- - green/orange, B+ - red/blue, B- - yellow/black.

    These method's are usually needed/used when trying to control two motors and setting it up without the help of the CNC control software, and also due to the mounting orientation of the second motor, the inverting the direction of motion will be necessary so they work together instead of working against each other.

    Click the link to respond:
    From the BOB how can I reverse one of my steppers - i'm running 2 on my Y Axis

  • How can I convert from Xylotex to yours, four axis with limit switches. Have parallel PC and steppers on machine.

    Sure, the USB interface has a place for 4 axes of limit switches.

    Each axis can have two limit switches: one for the ++ (positive) end and one for the -- (negative) end. The positive end would be the limit switch at the end of the machine that, say the machine has a 4'x8' area, reaches a bit after the 8 foot mark. The negative end would be the limit switch behind the 0 foot location behind the origin. If the origin is in the middle, the negative would be at a little more than the -4 foot end and the positive would be at a bit more than the +4 foot end. Note that you can have more than one switch on each pin where the NC is connected in serial fashion and the NO is connected in parallel fashion (this can be seen on the diagram in the multiple limits switch section). The software configurations for the limits switches are under File -> Settings -> Limit.

    A typical limit switch has three connections on it. These connections consist of COM (common), NC (normally closed) and NO (normally open). The COM would generally go to GND and the NC or the NO would go to the pin. If the NC is used, then the the switch is constantly connected until the switch is pushed (engaged) then the connection from the pin to gnd is broken (open). Use the settings in software to set whether in NC or NO configuration.

    Let me know if this information was helpful (or not) by adding information to this question. Thanks.

    User response:
    Thank you very much for this helpful information. I'm still a little fuzzy on how the 6 limit switches physically connect to each other and to the USB breakout board. You've stated one switch (home) goes to positive and another switch (limit) goes to negative. Are all the GND prongs from all 6 switches connected to each other and going to GND on the breakout board, or no? And the NC prongs, how exactly are they connected to each other? And to the board? There has to be a diagram somewhere shows this visually, no? I don't know how to wire the switches in series or in parallel. I have already physically installed all the switches on the machine and ran the wires to where the board is. Now I just need to know where to plug these wires into the board. Also, taking into consideration that I'm using the Planet CNC software, the only settings I have pertaining to limit switches is "Enable/Disable" for each axis, and the actual limit for each axis. Nothing about NC or NO. Is that only in Mach3?
    Thank you.

    buildyourcnc response:
    On the USB interface, the COM on the switch connects to GND and the NC or NO connects to the input pin (i.e. x++, y--, etc.)

    Limit switch configuration is rather difficult to understand, especially with series and parallel. You can think of series as a single wire going from GND to the axis letter input terminal (i.e. X++ or X--). If the wire is broken, then the circuit is open (or the switch is engaged in a normally closed scenario). Normally closed is like an actual wire, and when engaged, the switch "opens" (breaks the wire). This is why we recommend in some systems that you can put many switches in series on a single pin. When one of the switches is engaged (breaking the connection) then the entire circuit of switches is broken and the machine stops.

    In a parallel scenario, the state of the circuit is always broken until the one of the switches is engaged and the circuit is then closed or connected. The topology looks like a ladder. All the switches connect to both sides of the ladder and the switches are like the runs of the ladder (the horizontal bars that the feet are placed while climbing). Imagine all of the switches broken in this scenario (normally open). It would be like the ladder could be split in two, but if one of the ladder runs (switches) is closed by engaging it, then that run would connect both sides of the ladder and the two sides of the ladder would have a connection.

    There is a diagram on the USB page of the various limit switch configurations. If you need more information (visual and/or otherwise), please let us know and we will immediately add that information to benefit everyone.

    Click the link to respond:
    How can I convert from Xylotex to yours, four axis with limit switches. Have parallel PC and steppers on machine.

  • I have my motors wired like the wiring diagram I have two motors on Y axis how do I wire the second motor

    To move two stepper motors simultaneously with the same signal, simply wire the two stepper motor drivers to the same interface board signal terminals (CP and CW).

    Additional Information:
    using a ardino uno controller and a cnc sheild on top of that how to wirer 2 motors to 1 axis its the x axis ?

    Click the link to respond:
    I have my motors wired like the wiring diagram I have two motors on Y axis how do I wire the second motor

  • How do I put two motors on the same axis

    Yes, you can use 2 motors in the same axis output, however you will still need a driver for that stepper motor. Also depending on the orientation on which you mount the motor you might have to invert the direction of the motor, and that will be simple by swapping the A+,A-, to the B+,B- locations and vice versa, from the driver to the motor wiring.

    The wiring scheme would look like this:
    The step and direction output terminals on the CNC controller interface for the axis you want to have two motors would connect to both drivers of the two stepper motors on that axis.

    Additional Information:
    I have been running two motors from the same driver for 10 years on my 3m x 1.6m router. Both motors driving the gantry are wired together. I see no reason to use two drivers. The motors are high torque Nema 34. I've had no issues.

    Click the link to respond:
    How do I put two motors on the same axis

  • I HAVE ONE OF YOUR SMALLER STEPPER MOTORS RUNNING MY X AXIS BRIDGE CRANE AND IF IT IS MOVED TO FAST THE MOTOR SOUNDS LIKE SKIPPING STEPS WILL 651OZ REQUIRE A DIFFERENT POWER SUPPLY CONTROLER?

    Yes, the 651 oz/in motor requires a driver that is compatible to the motors (the motor will draw 6 amps max and the driver paired with this motor will be able to allow for a 6 amp draw). I would also recommend a 36 volt power supply for better high velocity performance.

    Click the link to respond:
    I HAVE ONE OF YOUR SMALLER STEPPER MOTORS RUNNING MY X AXIS BRIDGE CRANE AND IF IT IS MOVED TO FAST THE MOTOR SOUNDS LIKE SKIPPING STEPS WILL 651OZ REQUIRE A DIFFERENT POWER SUPPLY CONTROLER?

  • What wiring should I use to connect two motors for one axis?

    Yes, you can use 2 motors in the same axis output, however you will still need a driver for that motor! Also depending on the orientation on which you mount the motor you might have to invert the direction of the motor, and that will be simple by swapping the A+,A-, to the B+,B- locations and vice versa, from the driver to the motor wiring.

    Also you can run a slave motor using another axis on the board, and setting it up in the Planet-CNC settings.

    Planet-CNC/File/Settings/Axes, here you will enter 3 in the Number of Axes location, and then change the Function of the Axis 4 to Slave 1. There you will have the 4th axis or A-axis be a slave for the x-axis.
    Slave 1 - X-Axis
    Slave 2 - Y-Axis
    Slave 3 - A-Axis
    Slave 4 - B-Axis
    Etc...

    Click the link to respond:
    What wiring should I use to connect two motors for one axis?

  • Are the stepper motors on x and y axis suppose to be hot after running for approximately 30 min. I can touch them but they are hot.

    If your motors are hot to the touch, this is normal. Current is being drawn by the motor coils as the motor moves and as the motor stays at a position. If the motor is not using the current in the coils to move (holding it's position), the energy will be translated as heat (rather than motion, sound or light). Even while moving, some of the energy will be lost as heat. Remember that energy cannot be created nor destroyed.

    Click the link to respond:
    Are the stepper motors on x and y axis suppose to be hot after running for approximately 30 min. I can touch them but they are hot.

  • How long does it take to ship to Israel 3 nema 11 stepper motors ?

    Unfortunately I am not able to give an estimate of shipping time. This is because there are multiple shipping options, Some of them cost more than others, but ensure the package arrives in a certain number of days. Others do not give a number of days, and many factors could change the length of shipping time, such as weather, or busy season. It would be best to choose an option you are comfortable with the price of, and then Google search the typical times it takes for that option to get to you, or call the shipping company and request that estimated time from them.

    Click the link to respond:
    How long does it take to ship to Israel 3 nema 11 stepper motors ?

  • WHAT CAUSES ONE OF MY TWO AXIS MOTORS TO STOP WHILE THE MACH3 PROGRAM IS STILL RUNNING

    If one of your stepper motors decides to stop moving and the others are moving during a CNC milling or laser cutting job, then there could be two things that could be causing this.

    - The motor found its limiting torque (usually comes with a not-so-pleasant sound). This is where the control software is trying to move the stepper motor too fast (velocity, or too fast too quickly, acceleration) and the load against the stepper motor (inertia of the machine, or the material against the end mill while milling). Recommended action is to lower the velocity and/or acceleration, and/or lower the feedrate when cutting.

    - There is a wiring issue with the wiring from the driver to the motor. This could be a loose wire, or a chafed wire (or two shorting together). It can also be a loose digital wire from the controller board to the driver. Sometimes wire ties can be the culprit. Recommended action would be to thoroughly inspect the wiring.

    It's probably not the limit switches since that would cause a stop to the entire motion of the cnc router or laser machine.

    Sometimes Mach3 will show a status when something goes wrong, but in cases where the motor is stopping due to its torque limit, then that would not be shown in the status. It's always good to check it anyway.

    Additional Information:
    I need to clarify my situation a little better after going to my shop and trying to run another program on Mach 3. About 15 minutes into the milling process all the motors (2-X axis, Y axis and Z axis)stop but the program continues to run. I stop the program and after a couple of minutes when I try to restart the program all the motors start working again. Then after another 15 minutes or so, all the motors stop again. I checked and rechecked my wiring. This has never happened to me before when running the same programs with the same setups and motor speeds. All of a sudden when I reloaded a program I successfully used before it does this. Do you have any recommendations?

    Additional Information:
    Yeah, it sounds like a more complex issue. Have you tried running in the air without using the spindle. This may be a power related issue.

    Additional Information:
    That's exactly what I did. I ran the program without the router motor on just to see if the motors would get through the whole program but they stopped working after about fifteen minutes and then I was able to start them again after about 3 or 4 minutes. I never had this problem before so you can imagine my frustration especially after ruining a couple of projects on expensive material.

    Additional Information:
    Sure. I can completely understand. Try this: disconnect all but one of the driver from power and digital connection and do the air run. Repeat this for each driver and note your findings. This will rule out the drivers causing a power failure.

    Also, is your stepper motors and drivers on a separate power circuit from the computer?

    Additional Information:
    I will try disconnecting each driver and digital connection, which will be a real pain because it will be hard to access.

    All the stepper motors, drivers and computer are plugged into the same power strip.

    Additional Information:
    Ok, so there is no power failure going on, but I believe it is necessary to test each stepper motor and driver pair individually. Hopefully that will lead to a conclusion.

    Additional Information:
    It will take a little time but I will do it and report back on my findings.

    Additional Information:
    Curious, what machine is exhibiting this problem?

    Additional Information:
    I purchased a BYCNC kit back in 2009 with an approximate cutting area of 2' X 4'. I later changed out the Z-Axis Motor and controller for a larger one and have two X-axis motors and controllers. In 2010 I rebuilt the machine out of birch plywood instead of the particle board that the kit supplied. I sent Patrick pictures to him. The machine never gave me a problem till now.

    Additional Information:
    Thanks for the update. This is Patrick by the way. I answer pretty much all of the Customer Service questions. That machine has given quite a good history.

    Additional Information:
    I love the machine and made a number of samples of my work for my e-commerce site, but I can't start selling product until I know this problem is solved because I will not be able to fulfill orders. I finally got all the electronics out of its enclosed protected area near the machine so that I test each controller as you recommended. I hope the problem can be rectified. Will let you know.

    Additional Information:
    Thanks.

    Additional Information:
    I tested each stepper motor and driver pair individually and they worked so what might be the next step?

    Additional Information:
    Did each stepper motor driver pair work for the full +15 minutes?

    Additional Information:
    Yes, I had them in operation for over 30 minutes.

    Additional Information:
    Ok, well it’s good that the motors and driver are ok. We are now down to the power supply and the breakout board as possible causes for the stop. I have a feeling it may be the power supply where with all three drivers drawing current and the power supply maybe getting too hot. Is the fan in the power supply working? You can also test to see if there is 36 volts on the power supply voltage output (V+ and V-).

    Regarding the breakout board, if you have an oscilloscope, you can test if the driver pulses are outputting, but I would consider this as a last resort after you determine if there is a problem with the power supply.

    Additional Information:
    I tested the power supply with a voltmeter and each output was registering 39-40 volts. I think the problem may be the g-code. I am using V-Carve pro to do design and output to Mach 3 Mill g-code. When I studied the g-code lines I noticed that further into the program the z-axis g-code stopped zeroing out to move to the next part of the carving. In other words both the x and y keep moving and the z just stopped working because there was g-code missing. I think something is missing when the design was converted to g-code. I noticed that when I ran a simpler project it worked without problems so I need to investigate this further.

    Additional Information:
    New Update, Its not the g-code. I started to run the long program and everything was working fine until about 45 minutes into it, all the motors stopped working (but the program was still running) and there was a high pitched hum. When I put my hands on the motors they were all trying to move but it seemed they were all stalled. I turned the power off, gave it a minute and when I turned it back on I was able to move the motors again. Could this be a power supply problem?

    Additional Information:
    It does sound more and more like a power supply problem. Did you test the power supply after the motors stopped?

    Additional Information:
    No, I did not. What should I be looking for.

    Additional Information:
    It’s good that you know the voltage during normal operation, so you have a base understood. If the power supply is the problem, the voltage will be reduced or non existent when measured after the problem.

    Additional Information:
    Also, check to see if the fan is running on the power supply when the motors stop. That may (not absolutely) be an indication.

    Additional Information:
    I'll run another test, check the voltage and fan when the problem occurs and let you know. Thanks for hanging in there with me as we try to resolve the problem.

    Additional Information:
    It’s my pleasure. This service is rarely used and is faster then email. Odd nobody uses it. Any recommendations you can give would be great. No problem using this FAQ to pose ideas as this resolution will be cleaned up later.

    Additional Information:
    It might be that people do not realize you can communicate through the sight like this because they are so used to e-mail and texting. You may want to explain this feature in the customer service section.

    I ran the program this morning and it did not take long before the motors stopped. While operating the voltages for all three motors was 46 volts, when the motors stalled (and again there was a high pitch hum) the voltage went up to 60 volts and the fan on the power supply was operating.

    Additional Information:
    So, the driver work individually, but not all together. There is a high pitch sound when the motors fail. You have noted 60 volts from the power supply and the supply fan remains on. This is a difficult issue to resolve, but it seems to me that your power supply may be bad. The 60v measurement tells me that the current dropped and ohms law tells us that is current drops, volts will rise if the resistance stays the same.

    Additional Information:
    As one last test I am going to test each driver again and let them go through the entire program because it seems that the failure can occur at the beginning or towards the end of the program. When I originally tested ach driver I let them run for about a half an hour and the program takes over an hour to run completely. I just want to make sure that it is not the drivers. I will report back when I finished but as you noted it may be the power supply but I want to make sure.

    Additional Information:
    That’s a great idea.

    Additional Information:
    I just ran the x-axis through the whole program and there was no problem especially since I have two NEMA 23 motors moving that axis. Before I check the Y and Z could having a NEMA 34 on the Z axis with appropriate controller be a problem. I used the larger motor on the z axis because the router I am using is a large 1 1/2 hp. I've run this program in the past with this set-up and have not had a problem.

    Additional Information:
    Having a, say 3.0 amp driver, driving a stepper motor that typically requires a 6 amp driver would not seem to be an issue since the driver is limiting the current draw, but the driver may not be able to handle larger coil and back EMF with the protection on the 3.0 amp driver. With that said, I don’t believe that is the issue in this case.

    Additional Information:
    I don't either because I was able to run this and other complicated programs with this set-up in the past. I will let you know on the y and z axis.

    Additional Information:
    Thanks

    Additional Information:
    I ran the Y axis and z axis separately through the entire program and there was no stopping or problem. I guess the culprit is the power supply and I'll order a new one and hope that resolves the problem.

    Additional Information:
    Yes, that is the most probable cause. Please keep me informed. Thanks!

    Additional Information:
    Received and installed the new power supply. I ran the program with the router on and it worked flawlessly. The program runs for an hour and a half and I did not have a single problem. I guess it was the power supply but I was glad to go through all the diagnostics we discussed before replacing it. I hope this power supply lasts a lot longer than the last one. Thanks much for hanging in there with me and coming up with the solution.

    Additional Information:
    It’s my absolute pleasure and I am so happy to hear that the power supply replacement solved the problem.

    Click the link to respond:
    WHAT CAUSES ONE OF MY TWO AXIS MOTORS TO STOP WHILE THE MACH3 PROGRAM IS STILL RUNNING

  • I'm going to use 2 stepper motors for my X-axis. Can I use the same connections on the B/O board to do this knowing I will need 2 separate driver boards.

    Yes, absolutely. If you need two motors for a single axis, you will want to use the same terminals for pulse and direction from the breakout board.

    More specifically, you will wire the step/pulse pin to both drivers, and the direction pin to both drivers. If the motors need to turn in different directions, simply swap the A and B coil connections on one of the motors.

    Click the link to respond:
    I'm going to use 2 stepper motors for my X-axis. Can I use the same connections on the B/O board to do this knowing I will need 2 separate driver boards.

  • I have theNema 24, 425 Oz stepper motors kit what are my Ports and Pins?

    The ports and pins are designated by the breakout board that you have, Now here are the schematics for both(https://www.buildyourcnc.com/item/electronicsAndMotors-parallel-breakout-relay#prettyPhoto/2/ and https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-USB-Controller-Breakout#prettyPhoto/2/) Which for the Parallel the pins will be 1,14,2,3,4,5,6,7,8,9. For 1,14 you will need to use them together for a additional axis. Setup will be (ex.mach3) step in (2) / direction pin (3). continued for other pins, 4,5 6,7 etc.
    Now for the USB it has the label on the board right next to the terminal blocks, x-axis/etc.

    Click the link to respond:
    I have theNema 24, 425 Oz stepper motors kit what are my Ports and Pins?

  • how to calibrate stepper motors with ballscrews In mach3

    The easy way is to use Mach3's calibration process to calibrate the axis with the ballscrew coupled to the stepper motor. This is done in the settings tab of Mach3 and clicking the button just above the "Reset" button called "Set Steps Per Unit". A dialog box will appear asking how far you want Mach3 to move that axis. Mach3 will move that axis at a distance that is determined by the existing steps per unit value set in the motor tuning dialog box (config menu -> motor tuning). Not knowing the distance that this axis will travel, it's best to use a very small value.

    The more difficult way and the technique that should be used to create the initial value for the step per unit in the motor tuning dialog box. Use the steps/unit formula. This example will use inches.

    Steps/Inch
    = ((motor natural steps) x microsteps) / (the travel for one complete revolution)

    The travel for one revolution would be the distance a ball nut will travel with one complete turn of the ball screw. This is generally the number of starts / threads per inch. Say the ball screw has 5 starts (5 threads starting from the beginning of the screw) and 10 threads per inch (TPI), then the travel for one complete turn of the screw would be 5/10, or 1/2".

    Say you set the microstepping to be 1/4 on the stepper motor driver and your stepper motor has 200 natural steps per revolution (1.8 degrees per step), then the total steps would be 200 x 4 = 800.

    So, the steps/inch is 800 / 1/2" = 1600 steps per inch

    Hope that helps

    Click the link to respond:
    how to calibrate stepper motors with ballscrews In mach3

  • What causes one of my two x-axis motors to stop while the Mach 3 program is still running?

    If one of your stepper motors decides to stop moving and the others are moving during a CNC milling or laser cutting job, then there could be two things that could be causing this.

    - The motor found its limiting torque (usually comes with a not-so-pleasant sound). This is where the control software is trying to move the stepper motor too fast (velocity, or too fast too quickly, acceleration) and the load against the stepper motor (inertia of the machine, or the material against the end mill while milling). Recommended action is to lower the velocity and/or acceleration, and/or lower the feedrate when cutting.

    - There is a wiring issue with the wiring from the driver to the motor. This could be a loose wire, or a chafed wire (or two shorting together). It can also be a loose digital wire from the controller board to the driver. Sometimes wire ties can be the culprit. Recommended action would be to thoroughly inspect the wiring.

    It's probably not the limit switches since that would cause a stop to the entire motion of the cnc router or laser machine.

    Sometimes Mach3 will show a status when something goes wrong, but in cases where the motor is stopping due to its torque limit, then that would not be shown in the status. It's always good to check it anyway.

    Additional Information:
    I need to clarify my situation a little better after going to my shop and trying to run another program on Mach 3. About 15 minutes into the milling process all the motors (2-X axis, Y axis and Z axis)stop but the program continues to run. I stop the program and after a couple of minutes when I try to restart the program all the motors start working again. Then after another 15 minutes or so, all the motors stop again. I checked and rechecked my wiring. This has never happened to me before when running the same programs with the same setups and motor speeds. All of a sudden when I reloaded a program I successfully used before it does this. Do you have any recommendations?

    Additional Information:
    Yeah, it sounds like a more complex issue. Have you tried running in the air without using the spindle. This may be a power related issue.

    Additional Information:
    That's exactly what I did. I ran the program without the router motor on just to see if the motors would get through the whole program but they stopped working after about fifteen minutes and then I was able to start them again after about 3 or 4 minutes. I never had this problem before so you can imagine my frustration especially after ruining a couple of projects on expensive material.

    Additional Information:
    Sure. I can completely understand. Try this: disconnect all but one of the driver from power and digital connection and do the air run. Repeat this for each driver and note your findings. This will rule out the drivers causing a power failure.

    Also, is your stepper motors and drivers on a separate power circuit from the computer?

    Additional Information:
    I will try disconnecting each driver and digital connection, which will be a real pain because it will be hard to access.

    All the stepper motors, drivers and computer are plugged into the same power strip.

    Additional Information:
    Ok, so there is no power failure going on, but I believe it is necessary to test each stepper motor and driver pair individually. Hopefully that will lead to a conclusion.

    Additional Information:
    It will take a little time but I will do it and report back on my findings.

    Additional Information:
    Curious, what machine is exhibiting this problem?

    Additional Information:
    I purchased a BYCNC kit back in 2009 with an approximate cutting area of 2' X 4'. I later changed out the Z-Axis Motor and controller for a larger one and have two X-axis motors and controllers. In 2010 I rebuilt the machine out of birch plywood instead of the particle board that the kit supplied. I sent Patrick pictures to him. The machine never gave me a problem till now.

    Additional Information:
    Thanks for the update. This is Patrick by the way. I answer pretty much all of the Customer Service questions. That machine has given quite a good history.

    Additional Information:
    I love the machine and made a number of samples of my work for my e-commerce site, but I can't start selling product until I know this problem is solved because I will not be able to fulfill orders. I finally got all the electronics out of its enclosed protected area near the machine so that I test each controller as you recommended. I hope the problem can be rectified. Will let you know.

    Additional Information:
    Thanks.

    Additional Information:
    I tested each stepper motor and driver pair individually and they worked so what might be the next step?

    Additional Information:
    Did each stepper motor driver pair work for the full +15 minutes?

    Additional Information:
    Yes, I had them in operation for over 30 minutes.

    Additional Information:
    Ok, well it’s good that the motors and driver are ok. We are now down to the power supply and the breakout board as possible causes for the stop. I have a feeling it may be the power supply where with all three drivers drawing current and the power supply maybe getting too hot. Is the fan in the power supply working? You can also test to see if there is 36 volts on the power supply voltage output (V+ and V-).

    Regarding the breakout board, if you have an oscilloscope, you can test if the driver pulses are outputting, but I would consider this as a last resort after you determine if there is a problem with the power supply.

    Additional Information:
    I tested the power supply with a voltmeter and each output was registering 39-40 volts. I think the problem may be the g-code. I am using V-Carve pro to do design and output to Mach 3 Mill g-code. When I studied the g-code lines I noticed that further into the program the z-axis g-code stopped zeroing out to move to the next part of the carving. In other words both the x and y keep moving and the z just stopped working because there was g-code missing. I think something is missing when the design was converted to g-code. I noticed that when I ran a simpler project it worked without problems so I need to investigate this further.

    Additional Information:
    New Update, Its not the g-code. I started to run the long program and everything was working fine until about 45 minutes into it, all the motors stopped working (but the program was still running) and there was a high pitched hum. When I put my hands on the motors they were all trying to move but it seemed they were all stalled. I turned the power off, gave it a minute and when I turned it back on I was able to move the motors again. Could this be a power supply problem?

    Additional Information:
    It does sound more and more like a power supply problem. Did you test the power supply after the motors stopped?

    Additional Information:
    No, I did not. What should I be looking for.

    Additional Information:
    It’s good that you know the voltage during normal operation, so you have a base understood. If the power supply is the problem, the voltage will be reduced or non existent when measured after the problem.

    Additional Information:
    Also, check to see if the fan is running on the power supply when the motors stop. That may (not absolutely) be an indication.

    Additional Information:
    I'll run another test, check the voltage and fan when the problem occurs and let you know. Thanks for hanging in there with me as we try to resolve the problem.

    Additional Information:
    It’s my pleasure. This service is rarely used and is faster then email. Odd nobody uses it. Any recommendations you can give would be great. No problem using this FAQ to pose ideas as this resolution will be cleaned up later.

    Additional Information:
    It might be that people do not realize you can communicate through the sight like this because they are so used to e-mail and texting. You may want to explain this feature in the customer service section.

    I ran the program this morning and it did not take long before the motors stopped. While operating the voltages for all three motors was 46 volts, when the motors stalled (and again there was a high pitch hum) the voltage went up to 60 volts and the fan on the power supply was operating.

    Additional Information:
    So, the driver work individually, but not all together. There is a high pitch sound when the motors fail. You have noted 60 volts from the power supply and the supply fan remains on. This is a difficult issue to resolve, but it seems to me that your power supply may be bad. The 60v measurement tells me that the current dropped and ohms law tells us that is current drops, volts will rise if the resistance stays the same.

    Additional Information:
    As one last test I am going to test each driver again and let them go through the entire program because it seems that the failure can occur at the beginning or towards the end of the program. When I originally tested ach driver I let them run for about a half an hour and the program takes over an hour to run completely. I just want to make sure that it is not the drivers. I will report back when I finished but as you noted it may be the power supply but I want to make sure.

    Additional Information:
    That’s a great idea.

    Additional Information:
    I just ran the x-axis through the whole program and there was no problem especially since I have two NEMA 23 motors moving that axis. Before I check the Y and Z could having a NEMA 34 on the Z axis with appropriate controller be a problem. I used the larger motor on the z axis because the router I am using is a large 1 1/2 hp. I've run this program in the past with this set-up and have not had a problem.

    Additional Information:
    Having a, say 3.0 amp driver, driving a stepper motor that typically requires a 6 amp driver would not seem to be an issue since the driver is limiting the current draw, but the driver may not be able to handle larger coil and back EMF with the protection on the 3.0 amp driver. With that said, I don’t believe that is the issue in this case.

    Additional Information:
    I don't either because I was able to run this and other complicated programs with this set-up in the past. I will let you know on the y and z axis.

    Additional Information:
    Thanks

    Additional Information:
    I ran the Y axis and z axis separately through the entire program and there was no stopping or problem. I guess the culprit is the power supply and I'll order a new one and hope that resolves the problem.

    Additional Information:
    Yes, that is the most probable cause. Please keep me informed. Thanks!

    Additional Information:
    Received and installed the new power supply. I ran the program with the router on and it worked flawlessly. The program runs for an hour and a half and I did not have a single problem. I guess it was the power supply but I was glad to go through all the diagnostics we discussed before replacing it. I hope this power supply lasts a lot longer than the last one. Thanks much for hanging in there with me and coming up with the solution.

    Additional Information:
    It’s my absolute pleasure and I am so happy to hear that the power supply replacement solved the problem.

    Click the link to respond:
    What causes one of my two x-axis motors to stop while the Mach 3 program is still running?

  • delivered Stepper motors do not have the same colored wires as book/videos. What wires to to connect to what?

    You will need to use the datasheets or instructions on the product page of the actual motor you have. For instance, if you have the 425 oz-in motors, you can go here: https://www.buildyourcnc.com/item/electronicsAndMotors-nema24-425ozin

    Click on the link for the datasheet, or look in the instruction steps and you will find a wiring diagram. If the datasheet gives you an option for bipolar parallel connection scheme, use that one, otherwise, there is probably only one diagram, so you will need to use that one.

    Click the link to respond:
    delivered Stepper motors do not have the same colored wires as book/videos. What wires to to connect to what?

  • I have one of your smaller stepper motors running my X AXIS bridge crane and if it is moved to fast the stepper motor sounds like it is skipping steps will the 651oz stepper motor require a different power supply and controler?

    Yes, the 651 oz/in motor requires a driver that is compatible to the motors (the motor will draw 6 amps max and the driver paired with this motor will be able to allow for a 6 amp draw). I would also recommend a 36 volt power supply for better high velocity performance.

    Click the link to respond:
    I have one of your smaller stepper motors running my X AXIS bridge crane and if it is moved to fast the stepper motor sounds like it is skipping steps will the 651oz stepper motor require a different power supply and controler?

  • Hi I have a Proxxon MF70, I want to add 3axis stepper with controller and software by USB. Can you suggest a kit for me? Thanks.

    To implement a electronics combo to run you Proxxon MF70, you will need to find the correct drive components (ACME screw, linear rail, etc) and look into any specific modifications needed to your rig.
    I would recommend the USB 3 Axis Large Motors Electronics w/ USB Interface Board.
    Since the machine is metal, our larger motors would be highly recommended.

    We have not done this conversion, through research is recommended.

    Click the link to respond:
    Hi I have a Proxxon MF70, I want to add 3axis stepper with controller and software by USB. Can you suggest a kit for me? Thanks.