[ Log In ]
[ Register ]
NEW: CNC Router PLANS Available for all of our Newest CNC Models!! Click here to "Design Your CNC".

Question #: 14312

Question: How do you connect a VFD with R S T to 220 power single phase?

Current Solution

The below information is for your convenience; however, please seek the guidance of a professional electrician that is experienced with VFDs and electrical motors of this type.

A VFD (Variable Frequency Drive) for CNC Spindles that have input terminals labeled R, S and T will typically use the R and T for the Black (live) and White (neutral) connections and the PE (protective earth) will connect to ground (green).

Check this image for reference:
https://www.buildyourcnc.com/images/SpindleWiring-800.JPG

With the YL600-2S VFD, we have found that the R and S terminals are used where the R is live and S is neutral. Connect the PE to the green ground connection.





Additional Information:

Respond:

Other Possible Solutions to this Question

  • how do you wire the 2.2kw spindle and vfd for 110 single phase

    You can find the wiring diagram for the 2.2kW spindle and, follow through instructions here.
    https://www.buildyourcnc.com/item/spindle-inverter-2!2kw-spindle-novfd#prettyPhoto/8/

    Additional Information:


    Additional Information:
    wiring diagram at spindle top


    Additional Information:


    Additional Information:


    Additional Information:

    Click the link to respond:
    how do you wire the 2.2kw spindle and vfd for 110 single phase

  • How do you connect the spindle VFD to the parallel breakout board

    The parallel board contains a relay that is connected to pin #16. You can use this relay as the start/stop by connecting the relay to the FOR and it's related digital GND pin on the VFD.

    Additional Information:


    Additional Information:


    Additional Information:

    Click the link to respond:
    How do you connect the spindle VFD to the parallel breakout board

  • I received a VFD 110v yl600-2s-2k20 p 110v with 220v instructions, also the connectors on the VFD dose not match any wiring configuration you have.

    Ok, I will check the YL600 documentation Monday 4/3 and provide the answer here.

    Additional Information:


    Additional Information:
    I also received one of these and the button labels do not even match your programming instructions as stated on your web set. Please provide updated instruction to match the model shipped with the correct button names to press in The programming process.

    Additional Information:
    7/15/17 - I have exact problem. I do not see the solution posted???

    Additional Information:
    Mine is a 2.2Kw YL-620 connected to a 1.5Kw spindle.

    Code Address Function Set Range &Function Explanation Factory Setting User Set Vendor Suggested As shipped Code Address Decimal
    P00.00 0 Main Frequency 0-120HZ(400HZ) 50.0HZ  400 60 399.6 P00.0 0
    P00.01 1 Start / stop command source 0: Operator board 0 0  0 P00.1 1
    1:From external end control Electric machinery,operation panel STOP key effective
    2:From external end son control Electric machinery,operation panel STOP key invalid
    3:from (Modbus Rs485) control Electric machinery
    4:By user application program control Electric machinery
    P00.02 2 Reserved   0   0 P00.2 2
    P00.03 3 Stopping Mode 0:Decelerating stop 0 0  1 P00.3 3
    1:Coasting stop 10
    2:DC brake stop 0.2
    P00.04 4 VF:Highest output frequency 1.0-120.0HZ(400HZ) 50.0HZ 400 60 400 P00.4 4
    P00.05 5 VF:Maximum Voltage Output Frequency 5.0-120.0HZ(400HZ) 50.0HZ 400 60 400 P00.5 5
    P00.06 6 VF:Highest output Voltage 10.0%-150.0% 100.00% 100.00% 100.00% 100 P00.6 6
    P00.07 7 VF:Middle Frequency 1.0-120.0HZ(400HZ) 3.0Hz 3.5Hz 3.0Hz 3.5 P00.7 7
    P00.08 8 VF:Middle Voltage 10.0%-100.0% 10% 20% 10% 10 P00.8 8
    P00.09 9 VF:Min Frequency 0-120.0HZ(400HZ) 0.2HZ 0.2Hz 0.2Hz 0.2 P00.9 9
    P00.10 10 VF:Min Voltage 0%-100.0% 5% 10.00% 5.00% 5 P00.10 10
    P00.11 11 Analog Input quantity 1 Regulation Multistage velocity 0%-100% 100 100 100 100 P00.11 11
    P00.12 12 VF :Curve Setting 0-4 0 0 P00.12 12
    P00.13 13 Parameter Lock 0: lnvalid 0 0 P00.13 13
    1: Valid
    10: Restore the factory setting No other function
    P00.14 14 Reserved 0 0 P00.14 14
    P00.15 15 Power on Time prohibit External end son Start-up 0:Power on time,allow External end input effective level,start-up Electric machinery 0 0 P00.15 15
    1:Power on time,Not allow
    P00.16 16 0: FWD(X5)yes,Positive run the 0 P00.16 16
    1: REV(X6) Determine direction : Open Yes
    2:X_EF=EF,X_REV(X5)_DIR=DIR,FWD(X6)=
    3: Stop ,FWD(X5) turn off Instantaneous
    4: FWD(X5) turn off Instantaneous
    5: FWD(X5) turn off Instantaneous
    6: Stop ,FWD(X5) turn off Instantaneous
    7: REV(X6)When open,FWD(X5)Start-up
    P00.17 17 Many function input X1 function Choice ####################################### ####################################### 1 1 P00.17 17
    P00.18 18 Many function input X2 function Choice 1.0HZ 1 P00.18 18
    P00.19 19 Many function input X3 function Choice 1 P00.19 19
    P00.20 20 Many function input X4 function Choice 1 P00.20 20
    P00.21 21 External Terminal rise/Slow down increment 0-120HZ(400HZ) 1.0HZ 1 P00.21 21
    P00.22 22 External Terminal rise/Slow down time interval 0.2 0.2 P00.22 22
    P00.23 23 Physics amount display Proportion constant 0-999.9% 100.00% 100 P00.23 23
    P00.24 24 After power supply, display project choice 0: Display current target frequency 0 0 P00.24 24
    1:Display Electric machinery run frequency.
    2:Display Electric machinery run current.
    3:Display input AC voltage
    4:Display mother Line voltage
    5:Display output voltage
    6:Display speed paragraph Number SP x
    7:Display inverter temperature t xx
    8:Display input signal X1-X3/output signal
    9:Display user variable
    10:Display user Count value
    11:Display temporary debugging variable
    12:Display automatic multi segment run step and time
    P00.25 25 Display project automatic Return delayed time (10/S) 0:No,Automatic return;1-6delayed 10-60S Back Return 1 1 P00.25 25
    P01.00 256 REV Rotation Select 0: Rev Run Enable 0 0 P01.0 256
    1: Rev Run Forbidden 0
    P01.01 257 Electric machinery Reversing wait for time 0 P01.1 257
    P01.02 258 Deceleration Prevention overvoltage setting(%) 130 130 P01.2 258
    P01.03 259 Accelerated Prevention overcurrent setting(%) 130 130 P01.3 259
    P01.04 260 Overcurrent Set up (%) 200 200 P01.4 260
    P01.05 261 Overload protection Set up (%) 130 130 P01.5 261
    P01.06 262 Overload protection time Set up (s) 120 120 P01.6 262
    P01.07 263 Undervoltage protection Set up (%) 80 80 P01.7 263
    P01.08 264 Overvoltage protection Set up (%) 150 150 P01.8 264
    P01.09 265 After shutdown, start DC Brake voltage Setup (%) 15 15 P01.9 265
    P01.10 266 After shutdown, End DC Brake voltage Setup (%) 0 0 P01.10 266
    P01.11 267 After shutdown, DC Braking Time Set up 2 2 P01.11 267
    P01.12 268 After shutdown, DC Braking Initial Frequency Set up 0.6 0.6 P01.12 268
    P01.13 269 Before start , input DC brake voltage set up (%) 20 20 P01.13 269
    P01.14 270 Before start , End DC Brake voltage Set up (%) 15 15 P01.14 270
    P01.15 271 Before start , DC Braking Time Set up 3 3 P01.15 271
    P01.16 272 Direct start Initial frequency (Improve starting torque ) 100 100 P01.16 272
    P01.17 273 Direct start Initial frequency Hold time 0 0 P01.17 273
    P01.18 274 power failure frequency decline 80 80 P01.18 274
    P01.19 275 The power down frequency decline rate 5 5 P01.19 275
    P01.20 276 Restart No load time 10 10 P01.20 276
    P01.21 277 Restart voltage rise time 200 200 P01.21 277
    P02.00 512 When speed up torque will increased   100  100 100 60 P02.0 512
    P02.01 513 Deceleration time - Torque Boost   100  100 100 60 P02.1 513
    P02.02 514 Accelerate curve Choice 0  0 P02.2 514
    P02.03 515 Deceleration curve Choice 0  0 P02.3 515
    P02.04 516 Avoid the f requency 1 20 400 P02.4 516
    P02.05 517 Avoid the f requency 2 30 30 P02.5 517
    P02.06 518 Avoid the f requency 3   40 40 P02.6 518
    P02.07 519 Avoid the f requency Width   0 0 P02.7 519
    P02.08 520 Window frequency 1 45 45 P02.8 520
    P02.09 521 Window frequency 2 50 50 P02.9 521
    P02.10 522 ? 400 P02.10 522
    P03.00 768 RS485 Communication Baud Rate 0: 1200Bps 5 4 P03.0 768
    1: 2400Bps
    2: 4800Bps
    3: 9600Bps
    4: 19200Bps
    5: 38400Bps
    6: 57600Bps
    P03.01 769 RS485 Communication Addresses 1-254 10 10 P03.1 769
    P03.02 770 0: 8 bit data, 1 stop bits, odd parity 2 2 P03.2 770
    1: 8 bit data, 1 stop bits, parity check
    2: 8 bit data, 1 stop bit, no parity
    3: 8 bit data, 2 stop bits, odd parity
    4: 8 bit data, 2 stop bits, parity check
    5: 8 bit data, 2 stop bit, no parity
    P03.03 771 Communication error handling 0 P03.3 771
    P03.04 772 Communication error tolerance time 20 P03.4 772
    P03.05 773 4-20mA Break detection time 0 P03.5 773
    P03.06 774 Panel potentiometer,Lower limit of AD norm 3 P03.6 774
    P03.07 775 Panel potentiometer,Upper limit of AD specification 1020 1015 1015 P03.7 775
    P03.08 776 Panel potentiometer, frequency given of lower limit 0.0HZ 0 0 P03.8 776
    P03.09 777 Panel potentiometer, frequency given of Upper limit 0-120HZ(400HZ) 60.0HZ 400  60Hz 400 P03.9 777
    P03.10 778 Analog lnput 1 AD lower limit 0-1023 3.0Hz  60Hz 3 P03.10 778
    P03.11 779 Analog lnput 1 AD Upper limit 0-1023 1020 1010 1010 P03.11 779
    P03.12 780 Analog lnput 1 frequency given lower limit 0.0HZ 0 P03.12 780
    P03.13 781 Analog lnput 1 frequency given Upper limit 60.0HZ 400 400 P03.13 781
    P03.14 782 Analog lnput 2 AD lower limit 3.0Hz 3 P03.14 782
    P03.15 783 Analog lnput 2 AD Upper limit 1020 1010 1010 P03.15 783
    P03.16 784 Analog lnput 2 frequency given lower limit 0.0HZ 0 P03.16 784
    P03.17 785 Analog lnput 2 frequency given Upper limit 60.0HZ 60 P03.17 785
    P03.18 786 Analog output correlation 0 0 P03.18 786


    P03.19 787 Analog output gain setting 100 100 P03.19 787
    P04.00 1024 Mo analog multiplier output frequency multiplier 10 10 P04.0 1024
    P04.01 1025 Mo1 Function Options 0 0 P04.1 1025
    P04.02 1026 Mo2 Function Options 1 1 P04.2 1026
    P04.03 1027 Multi-function Relay 1 Function selection 0:fault Yes Electric , otherwise power failure 0 2 2 2 P04.3 1027
    P04.04 1028 Multi-function Relay 2 Function selection 1:Running Yes Electric ,otherwise power failure 3 3.0Hz 3 P04.4 1028
    2: Reserved
    3: Arbitrary frequency arrival Time, have Electric,Related to P02-10 settings
    4: , The power down Time,have Electric
    5:, low voltage Time, have Electric
    6:, Overvoltage Time, have Electric
    7: Overcurrent Time, have Electric
    8: Nonzero velocity Time,have Electric
    9:, DC brake Time, have Electric
    10: Over torque Time, have Electric
    11: External interrupt fault Time, have
    12: Forward Time, have Electric
    13: Reversal Time, have Electric
    14: Move Time, have Electric
    15: Accelerate Time, have Electric
    16: Deceleration Time, have Electric
    17: Constant speed Time, have Electric
    18:X1 close Time, have Electric
    19:X2 close Time, have Electric
    20:X3 close Time, have Electric
    21:X4 close Time, have Electric
    22:X5 close Time, have Electric
    23:X6 close Time, have Electric
    24: Forward and bus voltage greater than 400V Time, have Electric
    25: Reverse and bus voltage greater than 400V Time, have Electric
    P04.05 1029 Multi-function Relay 1 Action close Delayed 0-65.5 S 0 0 P04.5 1029
    P04.06 1030 Multi-function Relay 1 disconnect delay action 0-65.5 S 0 0 P04.6 1030
    P04.07 1031 Multi-function Relay 1 Action close Delayed 0-65.5 S 0 0 P04.7 1031
    P04.08 1032 Multi-function Relay 1 disconnect delay action 0-65.5 S 0 0 P04.8 1032
    P04.09 1033 Stall rotor detection time 0-65.5 S 1 1 P04.9 1033
    P04.10 1034 Switch amount (Di) sampling time 0-1000mS 8 24 24 P04.10 1034
    P04.11 1035 Stopping Mode 0:Decelerating stop 0 0 P04.11 1035
    1:Coasting stop
    P05.00 1280 PID Output Upper limit frequency 50 50 P05.0 1280
    P05.01 1281 PID Output lower limit frequency 25 25 P05.1 1281
    P05.02 1282 PID Given Source 0 0 P05.2 1282
    P05.03 1283 PID Values Given 0.2 0.2 P05.3 1283
    P05.04 1284 PID Output characteristic(FOR /REV) 0 0 P05.4 1284
    P05.05 1285 PID Output characteristic (FOR/REV) 0 0 P05.5 1285
    P05.06 1286 PID Proportional Gain 0-100.0 50 50 P05.6 1286
    P05.07 1287 PID Integration Time Ti 0-100.0 0-100.0 50 50 P05.7 1287
    P05.08 1288 PID Derivative Time Td 0-100.0 0-100.0 50 50 P05.8 1288
    P05.09 1289 PID Deviation Limit 0-50.0 5 5 P05.9 1289
    P05.10 1290 PID Integral upper limit 50 50 P05.10 1290
    P05.11 1291 PID Given Change Time 0-600.0 1 1 P05.11 1291
    P05.12 1292 PID Feedback Filter Time 0 0 P05.12 1292
    P06.00 1536 Acceleration Time 0  0 P06.0 1536
    P06.01 1537 Accel.Time 1 0.1-6553.5 5.0 9  5.0 5 P06.1 1537
    P06.02 1538 Decel. Time 1 0.1-6553.5 5.0 8.6  5.0 5 P06.2 1538
    P06.03 1539 Accel.Time 2 0.1-6553.5 0.1-6553.5 2 2 P06.3 1539
    P06.04 1540 Decel. Time 2 0.1-6553.5 0.1-6553.5 2 2 P06.4 1540
    P06.05 1541 Accel.Time 3 0.1-6553.5 0.1-6553.5 2 2 P06.5 1541
    P06.06 1542 Decel. Time 3 0.1-6553.5 0.1-6553.5 2 2 P06.6 1542
    P06.07 1543 Accel.Time 4 0.1-6553.5 0.1-6553.5 2 2 P06.7 1543
    P06.08 1544 Decel. Time 4 0.1-6553.5 0.1-6553.5 2 2 P06.8 1544
    P06.09 1545 Accel.Time 5 0.1-6553.5 0.1-6553.5 2 2 P06.9 1545
    P06.10 1546 Decel. Time 5 0.1-6553.5 0.1-6553.5 2 2 P06.10 1546
    P06.11 1547 Accel.Time 6 0.1-6553.5 0.1-6553.5 2 2 P06.11 1547
    P06.12 1548 Decel. Time 6 0.1-6553.5 0.1-6553.5 2 2 P06.12 1548
    P06.13 1549 Accel.Time 7 0.1-6553.5 0.1-6553.5 2 2 P06.13 1549
    P06.14 1550 Decel. Time 7 0.1-6553.5 0.1-6553.5 2 2 P06.14 1550
    P06.15 1551 Accel.Time 8 0.1-6553.5 0.1-6553.5 2 2 P06.15 1551
    P06.16 1552 Decel. Time 8 0.1-6553.5 0.1-6553.5 2 2 P06.16 1552
    P06.17 1553 Jog Acceleration Time 0.1-6553.5 0.1-6553.5 2 2 P06.17 1553
    P06.18 1554 Jog Deceleration Time 0.1-6553.5 0.1-6553.5 2 2 P06.18 1554
    P07.00 1792 Frequency 1 0-120HZ(400HZ) 50HZ 50 50 P07.0 1792
    P07.01 1793 Frequency 2 50HZ 45 45 P07.1 1793
    P07.02 1794 Frequency 3 50HZ 40 40 P07.2 1794
    P07.03 1795 Frequency 4 50HZ 35 35 P07.3 1795
    P07.04 1796 Frequency 5 50HZ 30 30 P07.4 1796
    P07.05 1797 Frequency 6 50HZ 25 25 P07.5 1797
    P07.06 1798 Frequency 7 50HZ 20 20 P07.6 1798
    P07.07 1799 Frequency 8 50HZ 15 15 P07.7 1799
    P07.08 1800 Frequency source selection 1 0: Operator board (parameter: P03.06~P03.09) 0 0 P07.8 1800
    P07.09 1801 Frequency source selection 2 1: Pre-set Freq, P00.00 Set frequency value,Operation panel keyboard,Can be set directly 2 2 P07.9 1801
    P07.10 1802 Frequency source selection 3 2:No. X paragraph frequency P07.00~P07.07 2 2 P07.10 1802
    P07.11 1803 Frequency source selection 4 3: Analog Input. :P03.10~P03.13) 2 2 P07.11 1803
    P07.12 1804 Frequency source selection 5 4: external simulation amount 2 (VI2) 2 2 P07.12 1804
    P07.13 1805 Frequency source selection 6 5: (Modbus Rs485)Given frequency 2 2 P07.13 1805
    P07.14 1806 Frequency source selection 7 6: User application program, given frequency 2 2 P07.14 1806
    P07.15 1807 Frequency source selection 8 7:( Pid)Output frequency 2 2 P07.15 1807
    Other: Reserved
    Note:three control methods (P07.08) 1808 1.The motor speed is controlled by the operating panel P07.16 1808
    2.Motor speed control by external terminals (Potentiometer 10K). P00.01 set to 1, P07.08 set to 3
    3.Motor speed control by external terminals. P00.01 set to 1,P07.08 set to 1.
    P07.16 1809 Jogging Frequency FORWARD 0-120HZ(400HZ) 15.0HZ 15 P07.17 1809
    P07.17 2048 Jogging Frequency REV 0-120HZ(400HZ) 15.0HZ 13.0Hz 13 P08.0 2048
    P08.00 2049 Automatic many paragraph Running: Running direction Binary data format to set the direction of operation, see (the automatic multi segment operation, the operation of the direction set table) 0  0 P08.1 2049
    P08.01 2050 Automatic many paragraph Running: mode Choice 0:Automatic multi segment operation is invalid; 0 0 P08.2 2050
    1:After execution complete,Stop;
    2:After execution complete,Keep the last running state,Continued running;
    3:After execution complete, Repeated execution.
    P08.02 2051 Automatic many paragraph Running time Units:S/M 0:S;1:M 0 0 P08.3 2051
    P08.03 2052 Automatic many paragraph Running: No.1 paragraph Running time Automatic multi-section run time,Set up Section speed run time。Time units are determined by P08.02 Decision。Set run is 0,Indicates that this section is not executed. 10 1 1 P08.4 2052
    P08.04 2053 Automatic many paragraph Running: No.2 paragraph Running time 10 1.5 1.5 P08.5 2053
    P08.05 2054 Automatic many paragraph Running: No.3 paragraph Running time 10 1 1 P08.6 2054
    P08.06 2055 Automatic many paragraph Running: No.4 paragraph Running time 10 1.5 1.5 P08.7 2055
    P08.07 2056 Automatic many paragraph Running: No.5 paragraph Running time 10 1 1 P08.8 2056
    P08.08 2057 Automatic many paragraph Running: No.6 paragraph Running time 10 1.5 1.5 P08.9 2057
    P08.09 2058 Automatic many paragraph Running: No.7 paragraph Running time 10 1 1 P08.10 2058
    P08.10 2304 Automatic many paragraph Running: No.8 paragraph Running time 10 1.5 1.5 P09.0 2304
    P09.00 2305 frequency Range(%) 0-200% 0 0 P09.1 2305
    P09.01 2306 frequency wave Range(%) 0-400% 200 30 30 P09.2 2306
    P09.02 2307 frequency Rise time(S) 0.1-999.9 S 6.0 S 6 P09.3 2307
    P09.03 2560 frequency decline time(S) 0.1-999.9 S 5.0 S 5 P10.0 2560
    P10.00 2561 Counter reload,value 1000 1000 P10.1 2561
    P10.01 2562 Counter current value 0 0 P10.2 2562
    P10.02 2563 Timer reload,value 1000 1000 P10.3 2563
    P10.03 2816 Timer current value 0 0 P11.0 2816
    P11.00 2817 Output Status 1 1 P11.1 2817
    P11.01 2818 Output Voltage (V) 0 0 P11.2 2818
    P11.02 2819 Output Current (A) 5 5 P11.3 2819
    P11.03 2820 Output Frequency (Hz) 50 50 P11.4 2820
    P11.04 3072 Current Heatsink Temperature 25 25 P12.0 3072
    P12.00 3073 Rated Motor Current 5 5 P12.1 3073
    P12.01 3074 Rated Motor Voltage 220 220 P12.2 3074
    P12.02 3075 Motor Pole number 2-100 2 2 P12.3 3075
    P12.03 3076 Motor no-load current 10 10 P12.4 3076
    P12.04 3077 Motor no-load current detection time(S) 10 10 P12.5 3077
    P12.05 3078 Converter rated current(A) 5 5 P12.6 3078
    P12.06 3079 Converter rated Voltage(V) 220 220 P12.7 3079
    P12.07 3080 DC bus output voltage% 140 130 P12.8 3080
    P12.08 3081 Heat sink over temperature protection point 70 75 P12.9 3081
    P12.09 3082 Radiating fin temperature sensor configuration 1 1 P12.10 3082
    P12.10 3083 Abnormal reset implement wait time 120 120 P12.11 3083
    P12.11 3084 Fan Function Pattern 0:Motor running tine, start fan; 1 1 P12.12 3084
    1:When the fan operating temperature (P12.12) is exceeded,Instant start fan; When the temperature is lower than the fan temperature point,Delay about 1 minutes to close the fan;
    2:Unconditional forced start fan;
    3:Fan Inoperation;
    P12.12 3085 Cooling fan operating temperature 55 45 50 P12.13 3085
    P12.13 3086 Fan Testing 0 0 P12.14 3086
    P12.14 3087 Bypass relay closed detection 0 0 P12.15 3087
    P12.15 3088 Bypass Relay delay time 1.5 1 P12.16 3088
    P12.16 3089 Power on delay timer initial value(S) 50 50 P12.17 3089
    P12.17 3090 Electric current sensor To configure 1 1 P12.18 3090
    P12.18 3091 Automatic stable pressure function Choice 1 1 P12.19 3091
    P12.19 3092 PWM Frequency 2.0-15.0KHZ (110V13.0KHZ 220V11.0KHZ 380V6.0KHZ) 8.0KHZ 13.0KHz 13 P12.20 3092
    P12.20 3328 SVPWM Pattern 0:Three-phase asynchronous motor, 0 0 P13.0 3328
    1:Two-phase asynchronous motor (Single-phase motor, 90 degree phase difference,Starting capacitor)
    P13.00 3329 103 P13.1 3329
    P13.01 3330 600 P13.2 3330
    P13.02 3331 1 P13.3 3331
    P13.03 3332 16.24 P13.4 3332
    P13.04 3333 1 P13.5 3333
    P13.05 3584 0 P14.0 3584
    P14.00 3585 35 P14.1 3585
    P14.01 3586 0.2 P14.2 3586
    P14.02 3587 1 P14.3 3587
    P14.03 3588 0 P14.4 3588
    P14.04 3589 0 P14.5 3589
    P14.05 3590 100 P14.6 3590
    P14.06 3591 1900 P14.7 3591
    P14.07 3592 2000 P14.8 3592
    P14.08 3593 59999 P14.9 3593
    P14.09 3594 5 P14.10 3594
    P14.10 3595 20 P14.11 3595
    P14.11 3596 0 P14.12 3596
    P14.12 3597 0 P14.13 3597
    P14.13 3598 0 P14.14 3598
    P14.14 3599 0 P14.15 3599


    Additional Information:
    Sorry, that is a paste from a spread sheet, you may have to do some formatting or paste it into a spread sheet to see it better...

    Additional Information:
    I will definitely do that. Thank you so much for providing the information!!

    Additional Information:
    I also have this problem with a yl620. Is there a solution?

    Additional Information:
    Is there a wiring diagram for the 110v units. My came with a 220 volt booklet.

    Additional Information:
    my unit also came with instructions for a 220 unit. I need a 110 wiring diagram.

    Additional Information:
    These instructions are lame at best, a friend of mine ordered one of these to install on a knife grinder that I built for him, and I proceeded to setup the unit, upon connecting it to the motor, it runs the motor, but hunt's at the lower speeds, and the setting I am looking for just isn't in the list, there's some settings in the 14's that don't say what there for, can anyone help?

    Click the link to respond:
    I received a VFD 110v yl600-2s-2k20 p 110v with 220v instructions, also the connectors on the VFD dose not match any wiring configuration you have.

  • can your vacuum pump controller card work with a 1-1/2 HP single phase 200v motor?

    The relay on the Vacuum Pump Controller can handle up to 250V and 12A. If your vacuum pump falls below those values, then the vacuum pump controller will work.

    Link to the vacuum pump controller:
    https://www.buildyourcnc.com/item/electronicsAndMotors-pneumatic-hydraulic-vacuum-pump-controller-sensor-redfrog-v1

    Click the link to respond:
    can your vacuum pump controller card work with a 1-1/2 HP single phase 200v motor?

  • do you have a 4 pin male connector with the wires attached?

    Yes and properly soldered.

    Additional Information:
    20

    Click the link to respond:
    do you have a 4 pin male connector with the wires attached?

  • What size of wire do you use to connect the VFD to the spindle?

    The type of wire that should be used between the spindle and the VFD (Variable Frequency Driver also called the inverter) should be of stranded type and we use between 18 and 16 AWG.

    The total current is divided among the three coil wires, therefor a wire gauge of 16 should be sufficient.

    Currently we use 20AWG 4 conductor.

    Additional Information:

    Click the link to respond:
    What size of wire do you use to connect the VFD to the spindle?

  • How do you wire the connection between the vfd and the pokoys57cnc breakout board?

    The Pokeys57cnc board: https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach4-mach3-USB-ethernet-Board

    This board contains a 0-10V output at pin #17 that can be connected to the spindle's VFD 0-10V input. On the VFD, this terminal is typically called AI0 or above.

    Pin #14 on the Pokeys57cnc board can also be used as a spindle error input.

    The Galvanically isolated I/O section of terminals on the Pokeys57cnc board (which also contain the pins 14 and 18, can be used to serve as the on/off for the spindle/VFD using the VFDs digital input.

    Click the link to respond:
    How do you wire the connection between the vfd and the pokoys57cnc breakout board?

  • Single Phase 220 supply to VFD. R=Neutral, S=110 Leg, T=110 Leg?? Not sure after reading up on this..

    When connecting the VFD to 220v, use the wiring diagram on this page to properly connect the wires from the 220v socket to the terminals of the VFD: https://buildyourcnc.com/item/spindle-inverter-2!2kw-spindle-novfd

    Other than that, you will need a certified electrician to make sure that the wall socket is correctly wired to the fuse panel.

    Click the link to respond:
    Single Phase 220 supply to VFD. R=Neutral, S=110 Leg, T=110 Leg?? Not sure after reading up on this..

  • Using a Pokey57 CNC and Mach 4 can you tell me how to connect my laser. The laser has three wires.. Ground - 12V Power and PMW.

    Do you have a TL or a TH for triggering the laser? If you power the digital side of your laser power supply with 12V and tie the gnd with the PWM gnd on the pokeys57CNC controller, you may be able to use the PWM on the pokeys57CNC controller. Before you do this, I would suggest that you contact polabs support (http://support.polabs.com/) and ask them if this is possible.

    Click the link to respond:
    Using a Pokey57 CNC and Mach 4 can you tell me how to connect my laser. The laser has three wires.. Ground - 12V Power and PMW.

  • How do I conect the VFD of the spindle to the RS485 connections

    It is not necessary to connect the spindle VFD (Variable Frequency Drive also called an Inverter) to the computer or CNC motion electronics. The VFD can be controlled independently using the control panel on the VFD. The control panel has the ability to control all aspects of the spindle including Speed, Torque, limits, etc. However, you can connect the VFD to the computer so the CNC control program can control the spindle during the CNC Machine operation. You will need to connect the VFD to the computer via a serial conection (in this case, it is the RS-485 protocol).

    The following are instructions on how to connect the VFD to Mach3 via this RS-485 serial connection.

    The first thing you will need is the dynamic link library to pair with mach3 called the Huanyang VFD Mach3 PlugIn. You can find this file at the mach3 support forum here: http://www.machsupport.com/forum/index.php/topic,14182.0.html

    You will also need to download the Microsoft .net 3.5 framework and install it: https://www.microsoft.com/en-us/download/details.aspx?id=21

    Follow the pdf that comes with the library file, but here is a synopsis of what you need to do (I also added a lot more information that may be useful during this process as the manual does not cover the main connections that need to be done):

    You will need to program your VFD so that it knows how to communicate with mach3 and the computer (go into the programming mode of the VFD and change these parameters):
    - PD001 - value 2 - Enables with communication aspect of the VFD
    - PD002 - value 2 - Enables frequency control from the communcations port
    - PD163 - value 1 - VFD address
    - PD164 - value 1 - Baud rate of 9600 (speed of the communication)
    - PD165 - value 3 - 8N1 RTU - 8 bits (that's the size of the word that gets communicated), N (No parity or no error checking) and 1 (1 stop bit)

    Copy the dll file to the PlugIns folder of mach3.

    Connect the RX and TX lines to your computer. There are a couple ways you can do this, but the recommended way would be to use an FTDI USB device which converts a USB to a serial com port. The device will have Rx and Tx connectors to connect to the VFD terminals with the same labels. This method is recommended since serial ports are not as common in computers these days.

    Next, you will need to configure mach3 to use the plugin library. Start mach3 and click on Menu -> config ->Config Plugins. Enable the new plugin by clicking on the red cross on the left column next to the plug in. Restart mach3 after doing this.

    No you need to configure mach3 to use the HuanyangVFD plugin. Go to the ports & pins configuration and select the spindle setup tab. Make sure that the Disable Spindle Relays checkbox is unchecked. We don't want mach3 to output a signal for a relay since the spindle will start up and turn off within the VFD and not from an external relay.

    Next, go to the HuanyangVFD settings by clicking on Menu -> plugin control -> HuanyangVFD. Set the parameters to the same settings you put into the VFD programming. The com port will be shown as new hardward when you plug in the USB FTDI device. A little bubble will be displayed at the bottom right where it will notify you that a new device is being installed (be patient while windows assigns a com port). Alternatively, you can use the windows device manager to see which port was set for the new USB FTDI device). You may need to restart mach3 several times until you get the correct information displayed in the PD001 and PD002 fields. When the com port is correct and the other parameters, like baud and VFD address is the same as you entered in the programming, then the PD001 and PD002 will show the number 2, otherwise, a 99 will appear which means that communication was not successful.

    You can now control the on/off and RPM of the spindle using the RS485 communication between mach3 and the VFD.

    Additional Information:
    The question was how to connect the spindle to the redfy. I did not receive a VFD.
    I have the redFly system and a 2.2kW Spindle - 110V how do i connect the spindle?

    Additional Information:
    If you received a spindle without a VFD, please contact us asap. Our spindle will not work without a VFD.

    Additional Information:
    Hi, how is this setup in mach4?

    Click the link to respond:
    How do I conect the VFD of the spindle to the RS485 connections

  • What would be your recommendation for "power supply 2 (24vdc)" connecting to USB motion card?

    A 24V connection to the USB motion card is only needed if you are using limit switches (inputs), powering the spindle/VFD speed and direction, and for the outputs, for powering other devices (mist, coolant, etc.).

    If you are using a VFD (Variable Frequency Drive, also called Inverter) for a spindle, they typically have a 24V out terminal that can be used with our USB motion card. If you are not using a spindle/VFD (we highly recommend one), then you will need to purchase a 24v power supply to power that side of the board.

    The outputs mentioned above are to connect to external devices and will require a relay (a mechanical switch that is controlled by a digital signal). This mechanical switch can turn on a device like coolant and mist, or even a router, if you are using one. A relay is required to turn on these devices because the devices are typically higher voltage, like mains (110v or 220v). So, a relay can turn on or off a high voltage device with a lower voltage (24v) signal.

    Click the link to respond:
    What would be your recommendation for "power supply 2 (24vdc)" connecting to USB motion card?

  • I connected 5Vdc power to the alternet connector of the USB Breakoutboard with the proper jumper setting and the board fried. What did I do wrong?

    Can you test the output of the 5V DC adapter to check the output voltage?

    Additional Information:
    The 5VDC voltage was generated by a PC ATX power supply and was measured (5.0VDC) just before connecting it to the controller PCB. I also verified polarity prior to powering up.

    Additional Information:
    Please call us to initiate a replacement of the USB interface. We would also like the existing USB interface to be return so that we can investigate the cause of this failure.

    Click the link to respond:
    I connected 5Vdc power to the alternet connector of the USB Breakoutboard with the proper jumper setting and the board fried. What did I do wrong?

  • How to use the power supplier with laser an commands ? Where is the documentation ?

    Dealing with our laser power supplies you can find a simple schematic/wiring diagram here ((Parallel)https://www.buildyourcnc.com/images/LaserWiringParallel.jpg / (USB)https://www.buildyourcnc.com/images/LaserWiringUSB.jpg),
    Now you can also find steps for our blackTooth laser cutter/engraver from steps 55-68 on our website here (https://www.buildyourcnc.com/blackToothLaserCutterAndEngraver.aspx).

    One of our previous customers gave us a courtesy of making a detailed forum on our blackTooth laser cutter assembly (http://blacktoothlaser.blogspot.ca/2013/04/index-for-blacktooth-laser.html?view=classic).

    Click the link to respond:
    How to use the power supplier with laser an commands ? Where is the documentation ?

  • HOW DO YOU CONNECT THE INVERTER TO AC?

    Input to VFD:
    240V Active - R
    240V Neutral - S
    Ground - E

    Click the link to respond:
    HOW DO YOU CONNECT THE INVERTER TO AC?

  • How to connect the spindle VFD to RS-485 serial modbus

    It is possible to connect and configure the spindle VFD to the mach3 via an RS485 communication and protocol.

    The first thing you will need is the dynamic link library to pair with mach3 called the Huanyang VFD Mach3 PlugIn. You can find this file at the mach3 support forum here: http://www.machsupport.com/forum/index.php/topic,14182.0.html

    You will also need to download the Microsoft .net 3.5 framework and install it: https://www.microsoft.com/en-us/download/details.aspx?id=21

    Follow the pdf that comes with the library file, but here is a synopsis of what you need to do (I also added a lot more information that may be useful during this process as the manual does not cover the main connections that need to be done):

    You will need to program your VFD so that it knows how to communicate with mach3 and the computer (go into the programming mode of the VFD and change these parameters):
    - PD001 - value 2 - Enables with communication aspect of the VFD
    - PD002 - value 2 - Enables frequency control from the communcations port
    - PD163 - value 1 - VFD address
    - PD164 - value 1 - Baud rate of 9600 (speed of the communication)
    - PD165 - value 3 - 8N1 RTU - 8 bits (that's the size of the word that gets communicated), N (No parity or no error checking) and 1 (1 stop bit)

    Copy the dll file to the PlugIns folder of mach3.

    Connect the RX and TX lines to your computer. There are a couple ways you can do this, but the recommended way would be to use an FTDI USB device which converts a USB to a serial com port. The device will have Rx and Tx connectors to connect to the VFD terminals with the same labels. This method is recommended since serial ports are not as common in computers these days.

    Next, you will need to configure mach3 to use the plugin library. Start mach3 and click on Menu -> config ->Config Plugins. Enable the new plugin by clicking on the red cross on the left column next to the plug in. Restart mach3 after doing this.

    No you need to configure mach3 to use the HuanyangVFD plugin. Go to the ports & pins configuration and select the spindle setup tab. Make sure that the Disable Spindle Relays checkbox is unchecked. We don't want mach3 to output a signal for a relay since the spindle will start up and turn off within the VFD and not from an external relay.

    Next, go to the HuanyangVFD settings by clicking on Menu -> plugin control -> HuanyangVFD. Set the parameters to the same settings you put into the VFD programming. The com port will be shown as new hardward when you plug in the USB FTDI device. A little bubble will be displayed at the bottom right where it will notify you that a new device is being installed (be patient while windows assigns a com port). Alternatively, you can use the windows device manager to see which port was set for the new USB FTDI device). You may need to restart mach3 several times until you get the correct information displayed in the PD001 and PD002 fields. When the com port is correct and the other parameters, like baud and VFD address is the same as you entered in the programming, then the PD001 and PD002 will show the number 2, otherwise, a 99 will appear which means that communication was not successful.

    You can now control the on/off and RPM of the spindle using the RS485 communication between mach3 and the VFD.

    Additional Information:
    Will this work with the brand called "best "vfd as well.

    Click the link to respond:
    How to connect the spindle VFD to RS-485 serial modbus

  • Breakout Board with Relay. What is the USB connection on this board for? Does this board Still require a 5v power supply?

    We generally use the USB to power the interface (breakout board). The current from the computer is sufficient to supply the breakout board.

    Click the link to respond:
    Breakout Board with Relay. What is the USB connection on this board for? Does this board Still require a 5v power supply?

  • How can I to connect a signal to turn on a mist in a USB board? Thank you

    You will need a 24V relay to control mist using the Mach3 USB breakout board. The wiring diagram (link below) will show one of the output terminals (O1, O2, O3 or O4) connected to one of the leads of the relay. The other lead is connected to the V+ to complete the circuit. The other part of the relay is used as a switch to control the mist on/off.

    Wiring diagram: https://www.buildyourcnc.com/Documents/Electric%20Wiring%20Diagram.pdf

    Mach3 USB Breakout Board for CNC Routers: https://buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach3-USB-Board

    Click the link to respond:
    How can I to connect a signal to turn on a mist in a USB board? Thank you

  • IF YOU HAVE CIRCUIT (OR PICTURE) OF HOW THIS RELAY IS CONNECTED TO THE ROUTER
  • WHAT ELECTRICAL CABLE DO I USE TO CONNECT VFD INVERTER SPINDLE?

    The type of wire that should be used between the spindle and the VFD (Variable Frequency Driver also called the inverter) should be of stranded type and we use between 18 and 16 AWG.

    The total current is divided among the three coil wires, therefor a wire gauge of 16 should be sufficient.

    Currently we use 20AWG 4 conductor.

    Additional Information:

    Click the link to respond:
    WHAT ELECTRICAL CABLE DO I USE TO CONNECT VFD INVERTER SPINDLE?