### Question #: 14410

Question:
**
How can I determine which wires on my stepper motor bellong to A+ A- B+ or B-?
**

**
**

**You can use a multimeter to determine the wires of the same coil (i.e A+ and A- belong to he same coil). The wires that are connected on the same coil will have relatively low resistance. A wire from one coil to another coil with have no continuity since the two coils are not touching each other.**

**
**

### Other Possible Solutions to this Question

**I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.**There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:

p = pitch of the screw

Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)

Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.

Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

R = radius of the lead screw

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))

Effort = 5 N + (90 N / (6.28 x 12.5 x .2))

Effort = 5 N + (90 N / (15.7))

Effort = 5 N + (5.73 N)

Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)

Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))

Effort = 5 N + (90 N / (6.28 x 2 x .2))

Effort = 5 N + (90 N / (2.512))

Effort = 5 N + (35.83 N)

Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:

thank you so much

Additional Information:

Additional Information:

Additional Information:

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Additional Information:

Pls

Additional Information:

1m 16mmdiameter ball screws calculations**Click the link to add information to this solution:**

I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.**HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE**There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:

p = pitch of the screw

Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)

Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.

Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

R = radius of the lead screw

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))

Effort = 5 N + (90 N / (6.28 x 12.5 x .2))

Effort = 5 N + (90 N / (15.7))

Effort = 5 N + (5.73 N)

Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)

Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))

Effort = 5 N + (90 N / (6.28 x 2 x .2))

Effort = 5 N + (90 N / (2.512))

Effort = 5 N + (35.83 N)

Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:

thank you so much

Additional Information:

Additional Information:

Additional Information:

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Additional Information:

Pls

Additional Information:

1m 16mmdiameter ball screws calculations**Click the link to add information to this solution:**

HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE**I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.**There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:

p = pitch of the screw

Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)

Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.

Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

R = radius of the lead screw

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))

Effort = 5 N + (90 N / (6.28 x 12.5 x .2))

Effort = 5 N + (90 N / (15.7))

Effort = 5 N + (5.73 N)

Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)

Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))

Effort = 5 N + (90 N / (6.28 x 2 x .2))

Effort = 5 N + (90 N / (2.512))

Effort = 5 N + (35.83 N)

Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:

thank you so much

Additional Information:

Additional Information:

Additional Information:

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Additional Information:

Pls

Additional Information:

1m 16mmdiameter ball screws calculations**Click the link to add information to this solution:**

I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.**How to determine lead screw length needed. My Thomson 1 1:4 rails are 60 inches long roughly for the router I’m building. I know I have to have it long enough to couple up with the stepper motor of course but does it matter if it’s a little long on the other end**It generally does not matter if it is longer at the other end as long as the lead screw provides the desired travel for that axis. The lead screw will only need to be long enough for the travel, plus any structure and lead-nut positioning.

For example:

- The motor that will turn the lead screw will need to be mounted at some position (generally at one end of the axis). In many cases, this positioning will be mounted where some of the lead screw will not be used (the lead nut will not be able to moved close to the coupling of the lead screw to the motor shaft). Add some of the length of the lead screw to be inserted into the coupling.

- If the lead screw will contain bearings at either end of the travel, that portion of the mechanical assembly will need to be considered in the lead screw length.

- The lead-nut will need to be mounted in a position on a structural member of the part that is to move. The distance from the part of the structure that will extend closest to the motor will have some distance to the position of the lead nut. This distance will need to be added to the lead screw length.

Add these discrepancies to the length of the lead screw and the travel length and you will have the final length.**Click the link to add information to this solution:**

How to determine lead screw length needed. My Thomson 1 1:4 rails are 60 inches long roughly for the router I’m building. I know I have to have it long enough to couple up with the stepper motor of course but does it matter if it’s a little long on the other end**I cannot turn the shaft of my stepper motor. It not even connected to a driver**The motor is creating it's own EMF when you try to turn the shaft manually. When coils are connected (or not connected) to any circuit that is not powered can cause unpredictable results.

The motor freezing from just turning it by hand with no connection is surely the wires touching each other. This is actually how we test if a motor is good or bad. If the motor freezes when two of the wires are touching, that means the motor is functioning properly since the magnets are causing current to flow through that coil opposing the magnet.**Click the link to add information to this solution:**

I cannot turn the shaft of my stepper motor. It not even connected to a driver**How do I determine what post processor I have on my shop built CNC. There are about a million to choose from on Vcarve Pro**You will probably have post processors like the following listed:

Mach2/3 ATC Arcs (inch)

Mach2/3 ATC Arcs (mm)

Mach2/3 Arcs (inch)

Mach2/3 Arcs (mm)

Mach2/3-WrapX2A ATC Arcs (inch)

Mach2/3-WrapX2A ATC Arcs (mm)

Mach2/3-WrapY2A ATC Arcs (inch)

Mach2/3-WrapY2A ATC Arcs (mm)

If you have an Automatic Tool Changer, use the post processor with the ATC in the name. For most applications and if you don't have an ATC (automatic tool changer), use the Mach2/3 Arcs (inch) or (mm) post processor.**Click the link to add information to this solution:**

How do I determine what post processor I have on my shop built CNC. There are about a million to choose from on Vcarve Pro**How do I connect my motor wires to the driver?**Use the datasheet associated to the motor that you purchased. Use the bipolar parallel configuration to optimum performance. The datasheets are located in their respective motor product pages. Just click on the motion electronics at the left and scroll down to the motor you have and click on the title, or datasheet link next to the motor. The datasheet will either be in the form of a pdf, or within the instructions on that product page.

Additional Information:

wiring diagram

Additional Information:**Click the link to add information to this solution:**

How do I connect my motor wires to the driver?**How can i calculate how much can carry my stepper motor? i have these informations: (Detent Torque: 2.2N.cm; Rotor Inertia: 54g.cm2; Holding Torque: 40N.cm). It's a nema 17**The holding torque will provide the best information for the calculation on how much your stepper motor will carry. But first, when you say carry, do you mean how much weight it can lift, how much inertia it can withstand during an acceleration and deceleration state or how fast it can accelerate or velocity it can maintain under load from the milling process?

**Click the link to add information to this solution:**

How can i calculate how much can carry my stepper motor? i have these informations: (Detent Torque: 2.2N.cm; Rotor Inertia: 54g.cm2; Holding Torque: 40N.cm). It's a nema 17**How can i calculate how much can carry my stepper motor? i have these informations: (Detent Torque: 2.2N.cm; Rotor Inertia: 54g.cm2; Holding Torque: 40N.cm). It's a nema 17**The holding torque will provide the best information for the calculation on how much your stepper motor will carry. But first, when you say carry, do you mean how much weight it can lift, how much inertia it can withstand during an acceleration and deceleration state or how fast it can accelerate or velocity it can maintain under load from the milling process?

**Click the link to add information to this solution:**

How can i calculate how much can carry my stepper motor? i have these informations: (Detent Torque: 2.2N.cm; Rotor Inertia: 54g.cm2; Holding Torque: 40N.cm). It's a nema 17**HOW CAN I DETERMINE STEPS/INCH, VELOCITY AND ACCELERATION?**In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

The steps per inch is dependent on the microstepping:

Steps/Inch for the x and y

Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps

Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches

steps/inch = 3200 / 3.5 = 914.28

This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

Velocity:

Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

Acceleration:

Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).

X-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/16 Microstep

Dipswitches: 01100110 (“0”=down, “1”=up)

Mach3 Motor Tuning: 914.29 steps/in

Y-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/16 Microstep

Dipswitches: 01100110

Mach3 Motor Tuning: 914.29 steps/in

Z-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/4 Microstep

Dipswitches: 01100100

Mach3 Motor Tuning: 1600 steps/in

Additional Information:

Additional Information:

Additional Information:

4th axis

Additional Information:**Click the link to add information to this solution:**

HOW CAN I DETERMINE STEPS/INCH, VELOCITY AND ACCELERATION?**How can I determine steps/inch, velocity and acceleration?**In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

The steps per inch is dependent on the microstepping:

Steps/Inch for the x and y

Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps

Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches

steps/inch = 3200 / 3.5 = 914.28

This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

Velocity:

Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

Acceleration:

Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).

X-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/16 Microstep

Dipswitches: 01100110 (“0”=down, “1”=up)

Mach3 Motor Tuning: 914.29 steps/in

Y-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/16 Microstep

Dipswitches: 01100110

Mach3 Motor Tuning: 914.29 steps/in

Z-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/4 Microstep

Dipswitches: 01100100

Mach3 Motor Tuning: 1600 steps/in

Additional Information:

Additional Information:

Additional Information:

4th axis

Additional Information:**Click the link to add information to this solution:**

How can I determine steps/inch, velocity and acceleration?**How can I connect my pc to my motor drivers and motors?**All you need is a CNC controller like the following options:

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach3-USB-Board

This controller is easy to connect using standard wire screw terminals and works with the mach3 control software.

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach4-mach3-USB-ethernet-Board

This controller is a little bit more difficult to connect, but is a more feature-rich controller and will work with both mach3 and mach4 CNC control software titles.

Specifically, a CNC controller connects to the computer via a USB cable and connects to the motor drivers. These controllers also connect to the limit switches, spindle/router control, air/fluid/mist control, etc.**Click the link to add information to this solution:**

How can I connect my pc to my motor drivers and motors?**Do you offer or can recommend a place where I can buy the Drive Pulley for NEMA 43 Stepper Motor (1586 oz-in 3/4" single shaft) 5.5 Amps?**We don't offer those drive pullies with a 3/4" bore at the moment. We can supply them if you are willing to wait. If so, what is the pulley pitch, how many teeth and the width of the belt.

Additional Information:

Meant to say pulleys, not pullies.**Click the link to add information to this solution:**

Do you offer or can recommend a place where I can buy the Drive Pulley for NEMA 43 Stepper Motor (1586 oz-in 3/4" single shaft) 5.5 Amps?**Hello there, I am a beginner in trying to control a stepper with a pc, you can sell me a kit to control my motor from the pc. I already have a motor, driver, and power supply**All you need is a CNC controller like the following options:

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach3-USB-Board

This controller is easy to connect using standard wire screw terminals and works with the mach3 control software.

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach4-mach3-USB-ethernet-Board

This controller is a little bit more difficult to connect, but is a more feature-rich controller and will work with both mach3 and mach4 CNC control software titles.

Specifically, a CNC controller connects to the computer via a USB cable and connects to the motor drivers. These controllers also connect to the limit switches, spindle/router control, air/fluid/mist control, etc.**Click the link to add information to this solution:**

Hello there, I am a beginner in trying to control a stepper with a pc, you can sell me a kit to control my motor from the pc. I already have a motor, driver, and power supply**How can I have two stepper motors on one axis**Yes, you can use 2 motors in the same axis output, however you will still need a driver for that motor! Also depending on the orientation on which you mount the motor you might have to invert the direction of the motor, and that will be simple by swapping the A+,A-, to the B+,B- locations and vice versa, from the driver to the motor wiring.

Also you can run a slave motor using another axis on the board, and setting it up in the Planet-CNC settings.

Planet-CNC/File/Settings/Axes, here you will enter 3 in the Number of Axes location, and then change the Function of the Axis 4 to Slave 1. There you will have the 4th axis or A-axis be a slave for the x-axis.

Slave 1 - X-Axis

Slave 2 - Y-Axis

Slave 3 - A-Axis

Slave 4 - B-Axis

Etc...**Click the link to add information to this solution:**

How can I have two stepper motors on one axis**I need to determine steps/inch mach3 setup information for my motors and drivers.**blueChick:

X-axis

“CW230 (3.0A) Driver”

Set to 1/16 Microstep, 2.7A

Dipswitches: 11001100

Mach3 Motor Tuning: 1422.22 steps/in

Y-axis

“CW230 (3.0A) Driver”

Set to 1/16 Microstep, 2.7A

Dipswitches: 11001100

Mach3 Motor Tuning: 1422.22 steps/in

Z-axis

“CW230 (3.0A) Driver”

Set to 1/4 Microstep, 2.7A

Dipswitches: 10101100

Mach3 Motor Tuning: 1600 steps/in

blackToe:

X-axis

“CW230 (3.0A) Driver”

Set to 1/16 Microstep, 2.7A

Dipswitches: 11001100

Mach3 Motor Tuning: 1422.22 steps/in

Y-axis

“CW230 (3.0A) Driver”

Set to 1/16 Microstep, 2.7A

Dipswitches: 11001100

Mach3 Motor Tuning: 1422.22 steps/in

Z-axis

“CW230 (3.0A) Driver”

Set to 1/4 Microstep, 2.7A

Dipswitches: 10101100

Mach3 Motor Tuning: 1600 steps/in

blackFoot:

X-axis

“CW8060 (6.0A) Driver”

Set to 1/16 Microstep, 2.7A

Dipswitches: 11001100 (“0”=down, “1”=up)

Mach3 Motor Tuning: 914.29 steps/in

Y-axis

“CW230 (3.0A) Driver”

Set to 1/16 Microstep, 2.7A

Dipswitches: 11001100

Mach3 Motor Tuning: 1422.22 steps/in

Z-axis

“CW230 (3.0A) Driver”

Set to 1/4 Microstep, 2.7A

Dipswitches: 10101100

Mach3 Motor Tuning: 1600 steps/in

greenBull:

X-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/16 Microstep

Dipswitches: 01100110 (“0”=down, “1”=up)

Mach3 Motor Tuning: 914.29 steps/in

Y-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/16 Microstep

Dipswitches: 01100110

Mach3 Motor Tuning: 914.29 steps/in

Z-axis

“CW8060 (6.0A) Driver”

Set to 5.43A, 1/4 Microstep

Dipswitches: 01100100

Mach3 Motor Tuning: 1600 steps/in

Scratch-Build / Book-Build Kit:

X-axis

“CW230 (3.0A) Driver”

Set to 1/4 Microstep, 2.7A

Dipswitches: 10101100 (“0”=down, “1”=up)

Mach3 Motor Tuning: 1600 steps/in

Y-axis

“CW230 (3.0A) Driver”

Set to 1/4 Microstep, 2.7A

Dipswitches: 10101100

Mach3 Motor Tuning: 1600 steps/in

Z-axis

“CW230 (3.0A) Driver”

Set to 1/4 Microstep, 2.7A

Dipswitches: 10101100

Mach3 Motor Tuning: 1600 steps/in

Additional Information:

Additional Information:

Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

Additional Information:**Click the link to add information to this solution:**

I need to determine steps/inch mach3 setup information for my motors and drivers.**Resetting machine up. I have the Redleaf computer but no am manually hooking the motors to the terminals. I have Brown/White twisted, Blue/Red Twisted, Orange/Green Twisted , and Black/yellow Twisted. I remember he had me twist them in pairs on 2 motors and my 3rd motor has direct 4 wires. Which goes to A+ , A-, B+ and B-**Wire to motor connections:

651oz-in NEMA34 (4 leads)

Red - A+

Green - A-

Yellow - B+

Blue - B-

425oz-in NEMA24 (8 leads)

Red + Blue - A+

Yellow + Black - A-

White + Brown - B+

Green + Orange - B-**Click the link to add information to this solution:**

Resetting machine up. I have the Redleaf computer but no am manually hooking the motors to the terminals. I have Brown/White twisted, Blue/Red Twisted, Orange/Green Twisted , and Black/yellow Twisted. I remember he had me twist them in pairs on 2 motors and my 3rd motor has direct 4 wires. Which goes to A+ , A-, B+ and B-**If I use a Porter Cable 3-3/4 router motor what size stepper motors do I need?**You can use the standard electronics combo: http://www.buildyourcnc.com/item/electronicsAndMotors-3axis-425-elcombo. The size of the stepping motors are generally sized with the overall machine structural weight, inertia of parts, the type of mechanical parts used to move the axes, and actually, less by the router which is more connect to how the machine is controlled.

**Click the link to add information to this solution:**

If I use a Porter Cable 3-3/4 router motor what size stepper motors do I need?**I have an engine NEMA 34 from Y axis on my green bull that do not response, I already check connections and everything seems to be OK, how can I check that the motor it's working properly or not?**If one or more motor is not responding, please follow the troubleshooting directions below:

For parallel Bob only! Make sure both the parallel and USB are connected.

Re-check wiring, and connections for continuity (no breaks in the wires) and check for correct wiring locations from driver to BoB.

Check dip switch settings on the driver.

Check components, by swapping the motors (ex. y-axis motor to z or x-axis driver and z or x-axis motor to y-axis driver) to check if motor functions on another driver.

Depending on software check step low active (mach 3) or invert pulse (planet-cnc) for the axis which is not responding.

Mach 3 - config/port & pins/motor outputs / Planet-CNC - file/settings/axes**Click the link to add information to this solution:**

I have an engine NEMA 34 from Y axis on my green bull that do not response, I already check connections and everything seems to be OK, how can I check that the motor it's working properly or not?