[ Register ]

Question #: 14360

Question: how to calibrate stepper motors with ballscrews In mach3

Current Solution

The easy way is to use Mach3's calibration process to calibrate the axis with the ballscrew coupled to the stepper motor. This is done in the settings tab of Mach3 and clicking the button just above the "Reset" button called "Set Steps Per Unit". A dialog box will appear asking how far you want Mach3 to move that axis. Mach3 will move that axis at a distance that is determined by the existing steps per unit value set in the motor tuning dialog box (config menu -> motor tuning). Not knowing the distance that this axis will travel, it's best to use a very small value.

The more difficult way and the technique that should be used to create the initial value for the step per unit in the motor tuning dialog box. Use the steps/unit formula. This example will use inches.

Steps/Inch
= ((motor natural steps) x microsteps) / (the travel for one complete revolution)

The travel for one revolution would be the distance a ball nut will travel with one complete turn of the ball screw. This is generally the number of starts / threads per inch. Say the ball screw has 5 starts (5 threads starting from the beginning of the screw) and 10 threads per inch (TPI), then the travel for one complete turn of the screw would be 5/10, or 1/2".

Say you set the microstepping to be 1/4 on the stepper motor driver and your stepper motor has 200 natural steps per revolution (1.8 degrees per step), then the total steps would be 200 x 4 = 800.

So, the steps/inch is 800 / 1/2" = 1600 steps per inch

Hope that helps

Respond:

Other Possible Solutions to this Question

• WHAT CAUSES ONE OF MY TWO AXIS MOTORS TO STOP WHILE THE MACH3 PROGRAM IS STILL RUNNING

If one of your stepper motors decides to stop moving and the others are moving during a CNC milling or laser cutting job, then there could be two things that could be causing this.

- The motor found its limiting torque (usually comes with a not-so-pleasant sound). This is where the control software is trying to move the stepper motor too fast (velocity, or too fast too quickly, acceleration) and the load against the stepper motor (inertia of the machine, or the material against the end mill while milling). Recommended action is to lower the velocity and/or acceleration, and/or lower the feedrate when cutting.

- There is a wiring issue with the wiring from the driver to the motor. This could be a loose wire, or a chafed wire (or two shorting together). It can also be a loose digital wire from the controller board to the driver. Sometimes wire ties can be the culprit. Recommended action would be to thoroughly inspect the wiring.

It's probably not the limit switches since that would cause a stop to the entire motion of the cnc router or laser machine.

Sometimes Mach3 will show a status when something goes wrong, but in cases where the motor is stopping due to its torque limit, then that would not be shown in the status. It's always good to check it anyway.

I need to clarify my situation a little better after going to my shop and trying to run another program on Mach 3. About 15 minutes into the milling process all the motors (2-X axis, Y axis and Z axis)stop but the program continues to run. I stop the program and after a couple of minutes when I try to restart the program all the motors start working again. Then after another 15 minutes or so, all the motors stop again. I checked and rechecked my wiring. This has never happened to me before when running the same programs with the same setups and motor speeds. All of a sudden when I reloaded a program I successfully used before it does this. Do you have any recommendations?

Yeah, it sounds like a more complex issue. Have you tried running in the air without using the spindle. This may be a power related issue.

That's exactly what I did. I ran the program without the router motor on just to see if the motors would get through the whole program but they stopped working after about fifteen minutes and then I was able to start them again after about 3 or 4 minutes. I never had this problem before so you can imagine my frustration especially after ruining a couple of projects on expensive material.

Sure. I can completely understand. Try this: disconnect all but one of the driver from power and digital connection and do the air run. Repeat this for each driver and note your findings. This will rule out the drivers causing a power failure.

Also, is your stepper motors and drivers on a separate power circuit from the computer?

I will try disconnecting each driver and digital connection, which will be a real pain because it will be hard to access.

All the stepper motors, drivers and computer are plugged into the same power strip.

Ok, so there is no power failure going on, but I believe it is necessary to test each stepper motor and driver pair individually. Hopefully that will lead to a conclusion.

It will take a little time but I will do it and report back on my findings.

Curious, what machine is exhibiting this problem?

I purchased a BYCNC kit back in 2009 with an approximate cutting area of 2' X 4'. I later changed out the Z-Axis Motor and controller for a larger one and have two X-axis motors and controllers. In 2010 I rebuilt the machine out of birch plywood instead of the particle board that the kit supplied. I sent Patrick pictures to him. The machine never gave me a problem till now.

Thanks for the update. This is Patrick by the way. I answer pretty much all of the Customer Service questions. That machine has given quite a good history.

I love the machine and made a number of samples of my work for my e-commerce site, but I can't start selling product until I know this problem is solved because I will not be able to fulfill orders. I finally got all the electronics out of its enclosed protected area near the machine so that I test each controller as you recommended. I hope the problem can be rectified. Will let you know.

Thanks.

I tested each stepper motor and driver pair individually and they worked so what might be the next step?

Did each stepper motor driver pair work for the full +15 minutes?

Yes, I had them in operation for over 30 minutes.

Ok, well it’s good that the motors and driver are ok. We are now down to the power supply and the breakout board as possible causes for the stop. I have a feeling it may be the power supply where with all three drivers drawing current and the power supply maybe getting too hot. Is the fan in the power supply working? You can also test to see if there is 36 volts on the power supply voltage output (V+ and V-).

Regarding the breakout board, if you have an oscilloscope, you can test if the driver pulses are outputting, but I would consider this as a last resort after you determine if there is a problem with the power supply.

I tested the power supply with a voltmeter and each output was registering 39-40 volts. I think the problem may be the g-code. I am using V-Carve pro to do design and output to Mach 3 Mill g-code. When I studied the g-code lines I noticed that further into the program the z-axis g-code stopped zeroing out to move to the next part of the carving. In other words both the x and y keep moving and the z just stopped working because there was g-code missing. I think something is missing when the design was converted to g-code. I noticed that when I ran a simpler project it worked without problems so I need to investigate this further.

New Update, Its not the g-code. I started to run the long program and everything was working fine until about 45 minutes into it, all the motors stopped working (but the program was still running) and there was a high pitched hum. When I put my hands on the motors they were all trying to move but it seemed they were all stalled. I turned the power off, gave it a minute and when I turned it back on I was able to move the motors again. Could this be a power supply problem?

It does sound more and more like a power supply problem. Did you test the power supply after the motors stopped?

No, I did not. What should I be looking for.

It’s good that you know the voltage during normal operation, so you have a base understood. If the power supply is the problem, the voltage will be reduced or non existent when measured after the problem.

Also, check to see if the fan is running on the power supply when the motors stop. That may (not absolutely) be an indication.

I'll run another test, check the voltage and fan when the problem occurs and let you know. Thanks for hanging in there with me as we try to resolve the problem.

It’s my pleasure. This service is rarely used and is faster then email. Odd nobody uses it. Any recommendations you can give would be great. No problem using this FAQ to pose ideas as this resolution will be cleaned up later.

It might be that people do not realize you can communicate through the sight like this because they are so used to e-mail and texting. You may want to explain this feature in the customer service section.

I ran the program this morning and it did not take long before the motors stopped. While operating the voltages for all three motors was 46 volts, when the motors stalled (and again there was a high pitch hum) the voltage went up to 60 volts and the fan on the power supply was operating.

So, the driver work individually, but not all together. There is a high pitch sound when the motors fail. You have noted 60 volts from the power supply and the supply fan remains on. This is a difficult issue to resolve, but it seems to me that your power supply may be bad. The 60v measurement tells me that the current dropped and ohms law tells us that is current drops, volts will rise if the resistance stays the same.

As one last test I am going to test each driver again and let them go through the entire program because it seems that the failure can occur at the beginning or towards the end of the program. When I originally tested ach driver I let them run for about a half an hour and the program takes over an hour to run completely. I just want to make sure that it is not the drivers. I will report back when I finished but as you noted it may be the power supply but I want to make sure.

That’s a great idea.

I just ran the x-axis through the whole program and there was no problem especially since I have two NEMA 23 motors moving that axis. Before I check the Y and Z could having a NEMA 34 on the Z axis with appropriate controller be a problem. I used the larger motor on the z axis because the router I am using is a large 1 1/2 hp. I've run this program in the past with this set-up and have not had a problem.

Having a, say 3.0 amp driver, driving a stepper motor that typically requires a 6 amp driver would not seem to be an issue since the driver is limiting the current draw, but the driver may not be able to handle larger coil and back EMF with the protection on the 3.0 amp driver. With that said, I don’t believe that is the issue in this case.

I don't either because I was able to run this and other complicated programs with this set-up in the past. I will let you know on the y and z axis.

Thanks

I ran the Y axis and z axis separately through the entire program and there was no stopping or problem. I guess the culprit is the power supply and I'll order a new one and hope that resolves the problem.

Yes, that is the most probable cause. Please keep me informed. Thanks!

Received and installed the new power supply. I ran the program with the router on and it worked flawlessly. The program runs for an hour and a half and I did not have a single problem. I guess it was the power supply but I was glad to go through all the diagnostics we discussed before replacing it. I hope this power supply lasts a lot longer than the last one. Thanks much for hanging in there with me and coming up with the solution.

It’s my absolute pleasure and I am so happy to hear that the power supply replacement solved the problem.

Y axis stop working X & Z work fine Y axis has two motors have check wiring & connections new breakout board still the same port & Pin set OK dont no were to go next David

my cnc plasma cutter will run out the program when cutting. what is the cause?

The cnc plasma question shod be a separate question. Can you pise that question by clicking the customer service live menu button at the top? Thanks.

WHAT CAUSES ONE OF MY TWO AXIS MOTORS TO STOP WHILE THE MACH3 PROGRAM IS STILL RUNNING

• HOW COMPLEX IS YOUR KIT TO ASSEMBLE, AND MOST IMPORTANTLY - HARD IT SETUP CONTROL THE LASER WITH MACH3?

The blackTooth Laser cutter and Engraver can be built in a weekend. Take a look at the build instructions and try to determine if you feel you have sufficient capability to put together the laser system.

HOW COMPLEX IS YOUR KIT TO ASSEMBLE, AND MOST IMPORTANTLY - HARD IT SETUP CONTROL THE LASER WITH MACH3?

• HOW DO I CALIBRATE MY MACHINE?

In Mach3, go to the Settings Tab, and select "Set Steps Per Unit". It will ask you how far to move the machine. Before you do this, make a mark on the table exactly where the end mill is resting. You can do this by lowering the end mill until it touches the material, then spinning it by hand to cut a small dimple in the material. Then, raise the end mill to clear the material, and assign a distance to move the machine. Once the machine moves and stops, measure the exact distance that it actually traveled with a tape measure, and enter this value into the dialog box that asks how far it moved. Mach3 will automatically adjust your steps per unit for that axis to be more accurate. Do this for all axes often to ensure you are cutting accurately. The longer distances you use calibrate, and the more precise you are with your measurements, the better.

HOW DO I CALIBRATE MY MACHINE?

• CAN THERE BE CLOSED LOOP CONTROL WITH STEPPING MOTORS?

I haven't delved into using encoders with stepping motors too much. From my research, you need to have a controller that can provide the closed loop control, rather than software handling that process. I have also found from my research that using encoders on stepping motors is generally used to stop the machine in the case that the motor failed to achieve the commanded position for some reason and gives the user the chance to correct and continue with the job.

If you want proper closed loop control, it may be best to go with servos and servo controller that provide the closed loop control within the real of those two components.

CAN THERE BE CLOSED LOOP CONTROL WITH STEPPING MOTORS?

We send out the Mach3 license on the same day unless the purchase was made on a weekend. You can call us anytime to expedite the license email.

• HOW TO CONTROL MY 2.2 KW SPINDLE VIA MACH3

You can go to our instructions on for the breakout board here: http://www.buildyourcnc.com/item/electronicsAndMotors-parallel-breakout-relay to get the information on turning the spindle on and off from the computer and mach3. Alternatively, you can connect the computer using RS485 serial to the inverter and send control commands that way.

HOW TO CONTROL MY 2.2 KW SPINDLE VIA MACH3 usb

How should I wire the Mach3 card (red, 4 axis) and the vfd (Yl620-a)?

HOW TO CONTROL MY 2.2 KW SPINDLE VIA MACH3

• WILL THE USB BREAKOUT BOARD WORK WITH MACH3?

Sure, the USB interface has a place for 4 axes of limit switches.

Each axis can have two limit switches: one for the ++ (positive) end and one for the -- (negative) end. The positive end would be the limit switch at the end of the machine that, say the machine has a 4'x8' area, reaches a bit after the 8 foot mark. The negative end would be the limit switch behind the 0 foot location behind the origin. If the origin is in the middle, the negative would be at a little more than the -4 foot end and the positive would be at a bit more than the +4 foot end. Note that you can have more than one switch on each pin where the NC is connected in serial fashion and the NO is connected in parallel fashion (this can be seen on the diagram in the multiple limits switch section). The software configurations for the limits switches are under File -> Settings -> Limit.

A typical limit switch has three connections on it. These connections consist of COM (common), NC (normally closed) and NO (normally open). The COM would generally go to GND and the NC or the NO would go to the pin. If the NC is used, then the the switch is constantly connected until the switch is pushed (engaged) then the connection from the pin to gnd is broken (open). Use the settings in software to set whether in NC or NO configuration.

Let me know if this information was helpful (or not) by adding information to this question. Thanks.

User response:
Thank you very much for this helpful information. I'm still a little fuzzy on how the 6 limit switches physically connect to each other and to the USB breakout board. You've stated one switch (home) goes to positive and another switch (limit) goes to negative. Are all the GND prongs from all 6 switches connected to each other and going to GND on the breakout board, or no? And the NC prongs, how exactly are they connected to each other? And to the board? There has to be a diagram somewhere shows this visually, no? I don't know how to wire the switches in series or in parallel. I have already physically installed all the switches on the machine and ran the wires to where the board is. Now I just need to know where to plug these wires into the board. Also, taking into consideration that I'm using the Planet CNC software, the only settings I have pertaining to limit switches is "Enable/Disable" for each axis, and the actual limit for each axis. Nothing about NC or NO. Is that only in Mach3?
Thank you.

buildyourcnc response:
On the USB interface, the COM on the switch connects to GND and the NC or NO connects to the input pin (i.e. x++, y--, etc.)

Limit switch configuration is rather difficult to understand, especially with series and parallel. You can think of series as a single wire going from GND to the axis letter input terminal (i.e. X++ or X--). If the wire is broken, then the circuit is open (or the switch is engaged in a normally closed scenario). Normally closed is like an actual wire, and when engaged, the switch "opens" (breaks the wire). This is why we recommend in some systems that you can put many switches in series on a single pin. When one of the switches is engaged (breaking the connection) then the entire circuit of switches is broken and the machine stops.

In a parallel scenario, the state of the circuit is always broken until the one of the switches is engaged and the circuit is then closed or connected. The topology looks like a ladder. All the switches connect to both sides of the ladder and the switches are like the runs of the ladder (the horizontal bars that the feet are placed while climbing). Imagine all of the switches broken in this scenario (normally open). It would be like the ladder could be split in two, but if one of the ladder runs (switches) is closed by engaging it, then that run would connect both sides of the ladder and the two sides of the ladder would have a connection.

There is a diagram on the USB page of the various limit switch configurations. If you need more information (visual and/or otherwise), please let us know and we will immediately add that information to benefit everyone.

WILL THE USB BREAKOUT BOARD WORK WITH MACH3?

• HOW LATE IN THE SEASON CAN I VACCINATE MY PATIENTS WITH INFLUENZA VACCINE?

Peak influenza activity does not generally occur until February. Providers are encouraged to continue vaccinating patients throughout the influenza season, including into the spring months (e.g., through May), as long as they have vaccine in the refrigerator and unvaccinated patients in their office.

Because influenza occurs in many areas of the world during April through September, vaccine should be given to travelers who missed vaccination in the preceding fall and winter. Another late season use of vaccine is for children younger than age 9 years who were vaccinated for the first time in the current vaccination season but failed to get their second dose. For each of these situations, vaccine can be given through the month of June since injectable influenza vaccine customarily has a June 30 expiration date.

HOW LATE IN THE SEASON CAN I VACCINATE MY PATIENTS WITH INFLUENZA VACCINE?

• DON'T WANT TO USE MY OWN MOTORS FOR THE REDLEAF CNC COMPUTER SYSTEM.

That shouldn't be a problem. I will need the current rating for the motors. We can subtract the price of the motors. and you can add you own. If you want us to solder the cable to the round connectors and them motor, you would need to send the motors to us.

Let me know and I can send a paypal invoice for the redLeaf without motors.

DON'T WANT TO USE MY OWN MOTORS FOR THE REDLEAF CNC COMPUTER SYSTEM.

• IF WE ASSUME DESIRE TO PLACE THE RED LEAF 6' AWAY FROM TABLE, HOW MUCH CABLE IS NEEDED CONNECT MOTORS ON TABLE ITSELF?

blackToe requires a minimum cable length of of 15 ft for X, 17 ft for Y and 18 ft for Z for the redLeaf to be positioned at midpoint along the long axis and under the table. Each axis would need have 6 feet extra (form the midpoint)

IF WE ASSUME DESIRE TO PLACE THE RED LEAF 6' AWAY FROM TABLE, HOW MUCH CABLE IS NEEDED CONNECT MOTORS ON TABLE ITSELF?

• DO YOU HAVE BLACKTOE MACHINES WITH TABLES READY TO GO OR HOW LONG DOES IT TAKE MAKE ONE?

Yes, we have the optional table for the blackToe, but we need to fabricate it, which only takes one day. We generally reserve one week for the total fabrication and packing of all parts.

DO YOU HAVE BLACKTOE MACHINES WITH TABLES READY TO GO OR HOW LONG DOES IT TAKE MAKE ONE?

• I HAVE ONE OF YOUR SMALLER STEPPER MOTORS RUNNING MY X AXIS BRIDGE CRANE AND IF IT IS MOVED TO FAST THE MOTOR SOUNDS LIKE SKIPPING STEPS WILL 651OZ REQUIRE A DIFFERENT POWER SUPPLY CONTROLER?

Yes, the 651 oz/in motor requires a driver that is compatible to the motors (the motor will draw 6 amps max and the driver paired with this motor will be able to allow for a 6 amp draw). I would also recommend a 36 volt power supply for better high velocity performance.

I HAVE ONE OF YOUR SMALLER STEPPER MOTORS RUNNING MY X AXIS BRIDGE CRANE AND IF IT IS MOVED TO FAST THE MOTOR SOUNDS LIKE SKIPPING STEPS WILL 651OZ REQUIRE A DIFFERENT POWER SUPPLY CONTROLER?

• MY MOTORS GET REALLY HOT TO THE TOUCH.

If your motors are hot to the touch, this is normal. Current is being drawn by the motor coils as the motor moves and as the motor stays at a position. If the motor is not using the current in the coils to move (holding it's position), the energy will be translated as heat (rather than motion, sound or light). Even while moving, some of the energy will be lost as heat. Remember that energy cannot be created nor destroyed.

MY MOTORS GET REALLY HOT TO THE TOUCH.

• how do I order multiple lengths of HIWIN guide rail with blocks?

Select the desired rail here:
https://buildyourcnc.com/Item/mechanical-rails-HIWIN-Linear

On the product page, enter the total "cut to order" length (in inches). Then call us to specify the cut lengths. Remember that our maximum length is 2000mm or 78.74 inches.

Our phone number is located at the top right of each web page by hovering over the "Need Help?".

how do I order multiple lengths of HIWIN guide rail with blocks?

• WHAT SETTINGS DO I USE IN MACH3 MOTOR TUNING?

blueChick:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackToe:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackFoot:

X-axis
“CW8060 (6.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

greenBull:

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in

Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

Scratch-Build / Book-Build Kit:

X-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 1600 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

L8NiICEm

-1 OR 2+427-427-1=0+0+0+1 --

-1 OR 2+145-145-1=0+0+0+1

-1' OR 2+101-101-1=0+0+0+1 --

-1' OR 2+739-739-1=0+0+0+1 or 'kXOzulhF'='

-1" OR 2+194-194-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

TO93cbNY

-1 OR 2+824-824-1=0+0+0+1 --

-1 OR 2+681-681-1=0+0+0+1

-1' OR 2+805-805-1=0+0+0+1 --

-1' OR 2+93-93-1=0+0+0+1 or 'MpFdFb3O'='

-1" OR 2+275-275-1=0+0+0+1 --

-1); waitfor delay '0:0:15' --

if(now()=sysdate(),sleep(15),0)

-1); waitfor delay '0:0:7' --

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

-1); waitfor delay '0:0:15' --

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

-1)); waitfor delay '0:0:15' --

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

1 waitfor delay '0:0:15' --

0"XOR(if(now()=sysdate(),sleep(9),0))XOR"Z

2k2XS4cL'; waitfor delay '0:0:15' --

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

g7NWXuig'); waitfor delay '0:0:15' --

-1; waitfor delay '0:0:15' --

XoN629J2')); waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-5 OR 247=(SELECT 247 FROM PG_SLEEP(15))--

-1)); waitfor delay '0:0:15' --

-5) OR 122=(SELECT 122 FROM PG_SLEEP(15))--

1 waitfor delay '0:0:15' --

-1)) OR 455=(SELECT 455 FROM PG_SLEEP(15))--

o1WPxXu4'; waitfor delay '0:0:15' --

X3pq07N4' OR 218=(SELECT 218 FROM PG_SLEEP(15))--

i2jhQp7d'); waitfor delay '0:0:15' --

xMv7x4te') OR 71=(SELECT 71 FROM PG_SLEEP(15))--

IbKvmZZx')); waitfor delay '0:0:15' --

YkhmkP9W')) OR 826=(SELECT 826 FROM PG_SLEEP(15))--

-5 OR 539=(SELECT 539 FROM PG_SLEEP(15))--

-5) OR 160=(SELECT 160 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@EQr47

-1)) OR 220=(SELECT 220 FROM PG_SLEEP(15))--

-1)) OR 266=(SELECT 266 FROM PG_SLEEP(9))--

-1)) OR 107=(SELECT 107 FROM PG_SLEEP(0))--

vL4vUHTG' OR 262=(SELECT 262 FROM PG_SLEEP(15))--

gGLXRSqE' OR 938=(SELECT 938 FROM PG_SLEEP(15))--

WT10Ii3x' OR 598=(SELECT 598 FROM PG_SLEEP(9))--

QUuBKFso') OR 152=(SELECT 152 FROM PG_SLEEP(15))--

nI56G5Pp')) OR 493=(SELECT 493 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@nxzWO

vJlQYk5k

-1 OR 2+406-406-1=0+0+0+1 --

-1 OR 2+236-236-1=0+0+0+1

-1' OR 2+914-914-1=0+0+0+1 --

-1' OR 2+282-282-1=0+0+0+1 or '9J7jHjSj'='

-1" OR 2+210-210-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(14),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(0),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-1)); waitfor delay '0:0:15' --

1 waitfor delay '0:0:15' --

RO4xZyuD'; waitfor delay '0:0:15' --

n2HpQRHN'); waitfor delay '0:0:15' --

hd4dcDEY')); waitfor delay '0:0:15' --

-5 OR 237=(SELECT 237 FROM PG_SLEEP(15))--

-5) OR 65=(SELECT 65 FROM PG_SLEEP(15))--

-1)) OR 486=(SELECT 486 FROM PG_SLEEP(15))--

-1)) OR 399=(SELECT 399 FROM PG_SLEEP(14))--

x4ZvP74B' OR 337=(SELECT 337 FROM PG_SLEEP(15))--

0VRZpjOv') OR 601=(SELECT 601 FROM PG_SLEEP(15))--

DrCdekI1')) OR 16=(SELECT 16 FROM PG_SLEEP(15))--

MQqu0z64')) OR 87=(SELECT 87 FROM PG_SLEEP(7))--

1'"

1����%2527%2522

@@HJ5oY

WHAT SETTINGS DO I USE IN MACH3 MOTOR TUNING?

• I would like some longer HIWIN rails and ballscrews for my x-axis, 9 feet or 108 inches. You list maximums as 78 inches.

Yes, however, if you are needing a length of the HIWIN specification rail longer than our 78" max length, then you can abut more than one rail together to increase the length of the rail. We do this for our long X-Axis travels on our Fabricator pro machine.

I would like some longer HIWIN rails and ballscrews for my x-axis, 9 feet or 108 inches. You list maximums as 78 inches.

• DO NOT HAVE PAYPAL ACCOUNT, WITH NO DESIRE TO OBTAIN ONE.

Yes, we accept standard credit cards on our shopping cart. All you need to do is enter the credit card information in the payment area.

DO NOT HAVE PAYPAL ACCOUNT, WITH NO DESIRE TO OBTAIN ONE.

• I AM INTERESTED IN THE 3 AXIS COMBO USB OPTION. NOTICE YOU ENDORSE PLANET-CNC FOR USE WITH THIS BUT WILL MACH3 INTERFACE WELL BEAK OUT BOARD?
• Is it possible to cut HIWIN rail to length with a hacksaw?

t's actually pretty difficult to cut the HIWIN rail with a hacksaw since the rail is hardened. We use a cut off saw with an abrasive blade.

Is it possible to cut HIWIN rail to length with a hacksaw?

Get Help with:
This Product
Orders
Tech Support
Sales
This Product
Order Query
Tech Support
Sales