[ Register ]

### Question #: 14680

Question: Can 3/8" lead screw be used instead of 1/2" on the 'BOOK' machine?

Current Solution

Yes, you will only need to change the coupling that couples the motor to the 3/8" lead screw.

Yes, you will only need to change the coupling that couples the motor to the 3/8" lead screw.

Respond:

### Other Possible Solutions to this Question

• I just changed my X and Y to the ACME 1/2" 5 start lead screw. What are the motor tuning numbers. I have the book built machine.

The settings that will have to be change will be your steps per inch in motor tuning (mach 3), or settings/axes(planetCNC). But we do not have the actual numbers/specs that will fit your 10 TPI 5 start lead screw, here is a tutorial video which explains how to get the exact numbers you need! (

)

I just changed my X and Y to the ACME 1/2" 5 start lead screw. What are the motor tuning numbers. I have the book built machine.

• Will the 1/2" 5 start lead screw and the 3/8" 5 start will it all work together in unison

If the turns per inch on a lead screw is different, then the nut on the lead screw will move at a different velocity.

Let me explain in more detail.

Let's say you have two lead screws:

- 1/2" 5 starts at 10 TPI = 2 turns per inch. (5 starts / 10 TPI = 1/2 inches per turn or 10 TPI / 5 Starts = 2 turns per inch.)

- 3/8" 2 starts at 10 TPI = 5 turns per inch. (2 starts / 10 TPI = 1/5 inches per turn or 10 TPI / 2 starts = 5 turns per inch.)

So, if two stepper motors (one connected to the 1/2" lead screw and the other connected to the 3/8" lead screw) turned 10 revolutions in 2 seconds, the 1/2" lead nut would travel 5 inches and the 3/8" lead nut would travel 2 inches at the 2 second mark.

Will the 1/2" 5 start lead screw and the 3/8" 5 start will it all work together in unison

• Will the 1/2" 5 start lead screw and the 3/8" 5 start will it all work together in unison

If the turns per inch on a lead screw is different, then the nut on the lead screw will move at a different velocity.

Let me explain in more detail.

Let's say you have two lead screws:

- 1/2" 5 starts at 10 TPI = 2 turns per inch. (5 starts / 10 TPI = 1/2 inches per turn or 10 TPI / 5 Starts = 2 turns per inch.)

- 3/8" 2 starts at 10 TPI = 5 turns per inch. (2 starts / 10 TPI = 1/5 inches per turn or 10 TPI / 2 starts = 5 turns per inch.)

So, if two stepper motors (one connected to the 1/2" lead screw and the other connected to the 3/8" lead screw) turned 10 revolutions in 2 seconds, the 1/2" lead nut would travel 5 inches and the 3/8" lead nut would travel 2 inches at the 2 second mark.

Will the 1/2" 5 start lead screw and the 3/8" 5 start will it all work together in unison

• What is the longest 1/2" Acme lead screw that I can buy?

We can supply 1/2" lead screw with a maximum continuous length of 77 inches.

Please give me a cost on a 6'x 1/2" lead screw. Thank you

no

what is the total cost for 77 inches of 1/2 inch lead screw?

what is the cost of 6 feet lead screw.

What is the longest 1/2" Acme lead screw that I can buy?

• If I buy the 1/2" 5 start lead screw and the 3/8" 5 start lead screws will it all work together

If the turns per inch on a lead screw is different, then the nut on the lead screw will move at a different velocity.

Let me explain in more detail.

Let's say you have two lead screws:

- 1/2" 5 starts at 10 TPI = 2 turns per inch. (5 starts / 10 TPI = 1/2 inches per turn or 10 TPI / 5 Starts = 2 turns per inch.)

- 3/8" 2 starts at 10 TPI = 5 turns per inch. (2 starts / 10 TPI = 1/5 inches per turn or 10 TPI / 2 starts = 5 turns per inch.)

So, if two stepper motors (one connected to the 1/2" lead screw and the other connected to the 3/8" lead screw) turned 10 revolutions in 2 seconds, the 1/2" lead nut would travel 5 inches and the 3/8" lead nut would travel 2 inches at the 2 second mark.

If I buy the 1/2" 5 start lead screw and the 3/8" 5 start lead screws will it all work together

• Since I am using normal all-thread lead screw 13 TPI 1/2" for the book build cnc, what can be the maximum feed rate of machine and how can I change the mechanical setup in mach 3? I am using 1/4" steel carbile endmill with 2 flutes and router is 2 HP with variable speed

Book build (scratch build), feedrates and recommendation.

Using standard allthread will provide around 20-30 ipm using 36 volts. Although it allows for a working CNC machine, the RPM of the spindle/router will need to spin at the lowest setting to provide the beat efficiency and life for the end mill at 1/4" cut diameter and higher. The speeds may be fine for smaller end mills.

If you would like faster speeds, you should change the lead screws on the CNC machine to the 1/2" 5 start 10 TPI which translates to 2 turns per inch which means, the stepping motor will not need to turn as fast to produce faster motion. That is to say, the stepping motor will only need to turn two revolutions for the machine to travel one inch and with the allthread, the stepping motor will need to turn 13 times to reach one inch.

https://www.buildyourcnc.com/CNCMachineMechanicalParts.aspx

To change the lead screws you will need (for each axis):

1. The lead screw for that axis.
2. Two 1/2" collars to keep the lead screw axially stable.
3. One Antibacklash nut.

20

• WHAT LEAD TIME CAN EXPECT FOR BLACKTOE SO PICK UP THE MACHINE?

You can expect a one week lead time for our machines.

WHAT LEAD TIME CAN EXPECT FOR BLACKTOE SO PICK UP THE MACHINE?

• WHAT LEAD TIME CAN EXPECT FOR THE BLACKTOE MACHINE?

You can expect a one week lead time for our machines.

WHAT LEAD TIME CAN EXPECT FOR THE BLACKTOE MACHINE?

• What are the other two dimensions of the 1/2" ID bearings used to support lead screws?

Inside Diameter: 1/2" (actual dimension 0.4975 inches or 12.63 mm)

- Outside Diameter: 1.122 inches or 28.4988 mm

- Thickness: .31 inches or 7.89 mm

Thank you for this question as it caused me to update the description:
https://www.buildyourcnc.com/item/bearing-!5-standardbearing

What are the other two dimensions of the 1/2" ID bearings used to support lead screws?

• If I order 19ft of the 1/2" lead screw will it come in three 6'5" lengths by default? This is what I need. Thanks

No they will not come in that length as a default, we would contact the buyer to ask specific lengths due to the total length purchased.

However if you order the 1/2" lead screw we can get them cut to the specific length you require, by contacting us here or call us at 281-815-7701.

If I order 19ft of the 1/2" lead screw will it come in three 6'5" lengths by default? This is what I need. Thanks

• USING MACH3, MY MACHINE STOPS IN THE MIDDLE OF A PROJECT. HOW CAN IT BE STARTED AGAIN FROM POINT STOPPED?

Dealing with a mid-stop cut via Mach3, you will have to be careful if it is intentionally or unintentional. If you desire to stop your machine while in the middle of a cut be sure to stop it when the machine is moving in an upward motion on the z-axis and the X/Y-axis are stationary. Then you can choose the point (G-code) where the machine was left off and click on the Run from here button on the Program Run screen (left hand side) right above the Reset button.
(Make sure spindle/router is running before hand!)

Now if the machine stops unintentionally, and was moving in either the X/Y-axis, then it will be difficult to run the machine from the original point dealing with the coordinates might have been lost due the the machine continuing motion but via Mach3 the machine has stopped.

If this occurs to fight this issue before hand, is marking your home with the spindle/router to make a hole were your home is. Although moving it manually back to home the machine can be off by the smallest amount and could cause an inconsistent cut. If accuracy is something that can not be risked, then you can home the machine about a 1/4" or 1/2" down from the original home to start your cut on the same material but loosing that small piece.

My typical go to solution is:

- Note the current g-code line where the machine stopped.
- If Mach3 errored and you cannot control the machine, Exit Mach3 - you may find that reset, stop does nothing to stop the spindle. When you exit mach3, the spindle will stop automatically.
- Restart Mach3. The DRO (Digital Readout) should show the correct coordinates where the machine position was before exiting Mach3.
- Scroll to the g-code line where the machine stopped. You may need to go a few lines prior to make sure you are not skipping any machining operations (which is why it is a good idea to learn the basics of g-code - don't worry, it's easy)
- Click on the "Run from Here" button.
- Mach3 will present you with a "Preparation Move" dialog box with the location that it will move to. If the coordinates shows a position that is into the material, make sure to specify a rapid height (clearance height) so the machine will move up first and then move to the location before moving down into the material. If the spindle is automatically controlled by Mach3, make sure to check the turn spindle on checkbox. If not, make sure the router or spindle is on before clicking OK.

My cnc router stops at gcode line 50,000 and cannot finish program. They are about 150k of lines total. I have Mach3 and have bought the additional line capability. Is 50,000 (or around that) the limit? Is Mach 4 hobby license better and in what ways? Thanks! Mike Huber

If you have a license for Mach3, then you should be able to run g-code indefinitely. I think there is something else going on.

If you have a license for Mach3, then you should be able to run g-code indefinitely. I think there is something else going on.
What else could be going on?

41PBGevE

-1 OR 2+358-358-1=0+0+0+1 --

-1 OR 2+69-69-1=0+0+0+1

-1 OR 2+69-69-1=0+0+0+1

-1' OR 2+902-902-1=0+0+0+1 --

-1' OR 2+902-902-1=0+0+0+1 --

-1' OR 2+730-730-1=0+0+0+1 or 'Qb1SuH5C'='

-1" OR 2+161-161-1=0+0+0+1 --

-1 OR 2+69-69-1=0+0+0+1

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

(select(0)from(select(sleep(9)))v)/*'+(select(0)from(select(sleep(9)))v)+'"+(select(0)from(select(sleep(9)))v)+"*/

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

-1; waitfor delay '0:0:19' --

-1); waitfor delay '0:0:15' --

-1)); waitfor delay '0:0:15' --

1 waitfor delay '0:0:15' --

O6enxjIS'; waitfor delay '0:0:15' --

0MgObbnm'); waitfor delay '0:0:15' --

8dan23Sv')); waitfor delay '0:0:15' --

-5 OR 898=(SELECT 898 FROM PG_SLEEP(15))--

-5 OR 353=(SELECT 353 FROM PG_SLEEP(19))--

-5) OR 539=(SELECT 539 FROM PG_SLEEP(15))--

-1)) OR 919=(SELECT 919 FROM PG_SLEEP(15))--

xjpbAodW' OR 81=(SELECT 81 FROM PG_SLEEP(15))--

r6v9pPjr') OR 551=(SELECT 551 FROM PG_SLEEP(15))--

RDopsUKk')) OR 996=(SELECT 996 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@HCYaP

USING MACH3, MY MACHINE STOPS IN THE MIDDLE OF A PROJECT. HOW CAN IT BE STARTED AGAIN FROM POINT STOPPED?

• CAN I GET DXF FILES FOR THE UPDATED PARTS OF MY MACHINE?

Yes, the customer will need to sign our NDA (Non Disclosure Agreement) form and send it back to us. We will then send the dxf of the specific updated part of the machine.

UoZD5KPp

-1 OR 2+416-416-1=0+0+0+1 --

-1 OR 2+291-291-1=0+0+0+1

-1' OR 2+657-657-1=0+0+0+1 --

-1' OR 2+849-849-1=0+0+0+1 or 'WBwHf8k5'='

-1" OR 2+276-276-1=0+0+0+1 --

1'"

1����%2527%2522

@@z69Jq

CAN I GET DXF FILES FOR THE UPDATED PARTS OF MY MACHINE?

• I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:
thank you so much

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Pls

1m 16mmdiameter ball screws calculations

What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

1

I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

• WHAT IS THE LEAD TIME FOR REDFROG PICK AND PLACE MACHINE?

You can expect a two week lead time for the redFrog pick and place machine.

WHAT IS THE LEAD TIME FOR REDFROG PICK AND PLACE MACHINE?

• HOW MUCH MDF IS USED FOR THE BOOK MACHINE COMBO #1

Three 24" x 48" sheets of mdf is used for the book build or the combo #1 plans and kit.

nt9ZbSRf

-1 OR 2+534-534-1=0+0+0+1 --

-1 OR 2+83-83-1=0+0+0+1

-1' OR 2+658-658-1=0+0+0+1 --

-1' OR 2+552-552-1=0+0+0+1 or '8QfEjrbS'='

-1" OR 2+524-524-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-1)); waitfor delay '0:0:15' --

1 waitfor delay '0:0:15' --

MXjE3Md3'; waitfor delay '0:0:15' --

gont9Py6'); waitfor delay '0:0:15' --

ixm7ZgaG'); waitfor delay '0:0:15' --

L3WX2lOf')); waitfor delay '0:0:15' --

-5 OR 669=(SELECT 669 FROM PG_SLEEP(15))--

-5) OR 526=(SELECT 526 FROM PG_SLEEP(15))--

-1)) OR 99=(SELECT 99 FROM PG_SLEEP(15))--

B3hszLzc' OR 556=(SELECT 556 FROM PG_SLEEP(15))--

K9OJrDz1') OR 613=(SELECT 613 FROM PG_SLEEP(15))--

73wbJn3w')) OR 247=(SELECT 247 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@zROBD

HOW MUCH MDF IS USED FOR THE BOOK MACHINE COMBO #1

• I am having a significant amount of trouble getting the 1/2" ID bearing to fit over the 1/2" 5 start lead screw. I can only get it about half an inch onto the rod. Any tips to get it to slide further?

There should be no problem with getting the 1/2" ID bearing on the lead screw, unless there is a bent in the lead screw or it has a piece of debris that is causing a issue.

Unless one of these items were purchased from a 3rd party, then there might be tolerance issues from the original manufacture which might cause this issue.
If possible please send photos to customerservice@buildyourcnc.com

I am having a significant amount of trouble getting the 1/2" ID bearing to fit over the 1/2" 5 start lead screw. I can only get it about half an inch onto the rod. Any tips to get it to slide further?

• HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE

There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:
thank you so much

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Pls

1m 16mmdiameter ball screws calculations

What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

1

HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE

• I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.

There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:
thank you so much

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Pls

1m 16mmdiameter ball screws calculations

What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

1

I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.

• What are the mounting hole dimensions of the 1/2" Anti-Backlash Lead Nut

The mounting hole dimension for the 1/2" 10 TPI 5 starts antibacklash nut is 1.13" or 28.7 mm. I added a drawing to the antibacklash nut product webpage so you can see other dimensions.

Thanks

You can also see the drawing directly here: https://www.buildyourcnc.com/images/Antibacklash_nut_1_2_drawing-800.JPG

What are the mounting hole dimensions of the 1/2" Anti-Backlash Lead Nut

Get Help with:
This Product
Orders
Tech Support
Sales
This Product
Order Query
Tech Support
Sales