[ Log In ]
[ Register ]
NEW: CNC Router PLANS Available for all of our Newest CNC Models!! Click here to "Design Your CNC".

Question #: 970

Question: I am working with a Spur gear that has a 15 tooth 3/8 bore/ 3/8 wide....is the 651ozin stepper motor compatible with this or do I need to get a different motor

Current Solution

This gear should work with this motor. The shaft on the 651ozin motor is 3/8"

Respond:

Other Possible Solutions to this Question

  • I have a blacktooth laser engraver. The Y Axis stepper motor needs to be replaced. Can you please provide me with the information I would need to replace this motor.

    Yes, if you need a replacement part on your machine please call us at 281-815-7701.

    Click the link to respond:
    I have a blacktooth laser engraver. The Y Axis stepper motor needs to be replaced. Can you please provide me with the information I would need to replace this motor.

  • What would I need to purchase to increase the Z axis stepper motor up one size from the one that comes with the Blacktoe 4.1 with computer? I can't get Patrick to answer e-mails, so I'll try here.

    Thanks for the question. The blackToe z-axis motor is a NEMA 24 425 oz-in stepping motor and the next step up is a NEMA 34 651 oz-in motor located here: https://buildyourcnc.com/item/electronicsAndMotors-nema34-651ozin


    To make it work on the blackToe CNC machine, you would need to fabricate a new mount and the top bearing mount, or request us to fabricate it for you by calling the office.

    Curious, why the need to increase the size? If the motor is having a difficult time, there may be a deeper mechanical issue at play. One issue you may have is that the bearings are needing shim washers to separate the inner and outer races. If the two races are rubbing against the coupling or collar, the bearing may be difficult to turn under the weight of the assembly. If there is too much friction between the anti-backlash nut and the lead screw, you can add some 2-in-1 oil, or other similar lubricant.

    Thank you for using our Customer Service Live. Patrick often answers these questions. We prefer this system over email as these questions will benefit others.

    If you have additional questions or need more explanation relating to this question, please add to this answer.

    User response:
    I have added the shim washer between the bearing and coupling and have always used a light oil on the lead screw. I halved the acceleration on the Z-axis. Then I re-ran a topo that took two hours on the finish pass. No change in my results - the Z-axis slowly dropped until when the program finished and everything went back to the start point, the Z axis was lower by 0.378 inches than when it started at 0.800 above the surface.

    Any suggestions would be appreciated. Maybe I need more shim washers in the assembly between all the bearing surfaces?

    buildyourcnc response:
    Before you add a larger motor, check these first:

    1. take the motor off by remove only the motor screws and removing the motor as well as the coupling half that is secured to the motor shaft.

    2. Turn the lead screw by hand. This will still be connected to the z-axis assembly by the anti-backlash nut, so you will feel the resistance in the upward motion of the z-axis. Does it feel relatively easy to turn, or very difficult?

    3. If the resistance is relatively normal with respect to gravity and normal friction between the anti-backlash nut and the screw, then you may want to half the velocity as well on the z-axis motor tuning, and even reduce the acceleration a bit more. Doing topographical layouts should not require fast z-axis motor travel. Be careful not to lower the z-axis acceleration if you are using constant velocity as this can make the topo "too smooth" where there may be features such as cliffs present. If you need to lower acceleration drastically, then use exact stop rather than constant velocity.

    Another gotcha that may be causing this phenomenon is motor cable/wire chafing. We had this same issue crop up where two wires were shorting only at a specific position because the wires moved just enough to cause these wires to connect. This was caused by a zip tie. Zip ties have a very sharp edge that can cut the insulation of the wire. A hint of this problem is if this phenomenon is only present after working successfully with the machine for a greater period of time.

    Use response:
    I bought a new lead screw, bearings, antibacklash nut, and shim washers (WHICH NEED TO BE IN YOUR ONLINE CATALOG) and installed them. (Like another commentor on this site, my lead screw wouldn't go through the bearings. Simple solution was to chuck it into my drill press and 400 grit smooth it until a snug fit was had. Lowest RPM.)

    Anyhow, I ran another Topo yesterday and got the same results. The wires are not frayed, the acceleration has been halved, the speed reduced to a crawl. When testing manually, twisting the Z axis up was very hard to do compared to lowering it.

    I have thought about a counterbalance of some type, but that introduces lots of other problems.

    Anything you can thing of will certainly help.

    I can send pictures, etc.

    Thanks!

    Buildyourcnc response
    What router/spindle do you have installed?

    User response:
    The one you sold me - 110 V, 1.5KW water cooled.

    User response:
    This problem of the z axis drift has been evident since I first started using the machine a couple of years ago. Lithophanes, stipples, topographic and other heavy z axis users have been particularly bad. It is to the point that I am turning away opportunities for lack of capability.

    Buildyourcnc response:
    I think all options may be exhausted. We will design a new mount that holds a large motor. Please give us a call so we can arrange to send that out to you.

    We just determined that the existing mount need to be adjusted by about one millimeter for the main mounting hoes for the larger NEMA 34 motor to fit. The overall mount will look the same but the outside hole spacing will be adjusted by a very small amount to match the larger motor mounting holes. This new adjustment will be included with all new machines. We will send you the new mount (consisting of two structural pieces) and the longer screws that will be needed to extend to fit the motor frame thickness.

    Additional Information:


    Additional Information:
    They didn't send the longer screws, nor the new required coupling, but I finally got it together and it works just fine. It returns to precise Z zero every time.

    But the motor runs pretty hot because I think it should be run at a higher voltage than the current power supply provides.

    Any new sales of Blacktoe 4.1 should include this modification.

    Cheers.

    Click the link to respond:
    What would I need to purchase to increase the Z axis stepper motor up one size from the one that comes with the Blacktoe 4.1 with computer? I can't get Patrick to answer e-mails, so I'll try here.

  • I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

    There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

    This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

    Effort = Sf + (Load/(2 x pi x (R/p) x Se))

    where:
    p = pitch of the screw
    Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
    Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
    Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)
    R = radius of the lead screw


    This formula is based on the "law of the machine"

    The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

    Example:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 13 = .08 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
    Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
    Effort = 5 N + (90 N / (15.7))
    Effort = 5 N + (5.73 N)
    Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

    I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

    Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

    With a bit of algebra, the formula can be rewritten to find the load:

    Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

    Another formula that does not consider friction at all:

    Effort = (Load x p) / (2 x pi x R)

    Lets see if we get similar results:

    Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
    Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

    The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

    It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

    Example for a 10 TPI 5 start (2 turns per inch) lead screw:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 2 = .5 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
    Effort = 5 N + (90 N / (6.28 x 2 x .2))
    Effort = 5 N + (90 N / (2.512))
    Effort = 5 N + (35.83 N)
    Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

    Customer Response:
    thank you so much

    Additional Information:


    Additional Information:


    Additional Information:
    how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

    Additional Information:
    Pls


    Additional Information:
    1m 16mmdiameter ball screws calculations

    Click the link to respond:
    I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

  • I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.

    There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

    This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

    Effort = Sf + (Load/(2 x pi x (R/p) x Se))

    where:
    p = pitch of the screw
    Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
    Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
    Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)
    R = radius of the lead screw


    This formula is based on the "law of the machine"

    The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

    Example:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 13 = .08 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
    Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
    Effort = 5 N + (90 N / (15.7))
    Effort = 5 N + (5.73 N)
    Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

    I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

    Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

    With a bit of algebra, the formula can be rewritten to find the load:

    Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

    Another formula that does not consider friction at all:

    Effort = (Load x p) / (2 x pi x R)

    Lets see if we get similar results:

    Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
    Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

    The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

    It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

    Example for a 10 TPI 5 start (2 turns per inch) lead screw:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 2 = .5 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
    Effort = 5 N + (90 N / (6.28 x 2 x .2))
    Effort = 5 N + (90 N / (2.512))
    Effort = 5 N + (35.83 N)
    Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

    Customer Response:
    thank you so much

    Additional Information:


    Additional Information:


    Additional Information:
    how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

    Additional Information:
    Pls


    Additional Information:
    1m 16mmdiameter ball screws calculations

    Click the link to respond:
    I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.

  • I'm going to use 2 stepper motors for my X-axis. Can I use the same connections on the B/O board to do this knowing I will need 2 separate driver boards.

    Yes, absolutely. If you need two motors for a single axis, you will want to use the same terminals for pulse and direction from the breakout board.

    More specifically, you will wire the step/pulse pin to both drivers, and the direction pin to both drivers. If the motors need to turn in different directions, simply swap the A and B coil connections on one of the motors.

    Click the link to respond:
    I'm going to use 2 stepper motors for my X-axis. Can I use the same connections on the B/O board to do this knowing I will need 2 separate driver boards.

  • In the BlackTooth instruction the concluding sentence suggests connecting a wire from the right terminal of the pot to the VCC on the Laser Supply. There is no VCC on the power supply for the Laser that I can find. So, does this wire go to a different terminal on the power supply, or somewhere else where VCC exists, such as either stepper motor control?
  • My stepper motor has little to no torque on anything less than 1/4 steps.. tested on two drivers verified to be working. Can this be remedied?

    For our motors, you must verify the correct wiring for each.
    425 oz-in motor: (Wiring: Red and Blue to A+, Yellow and Black to A-, White and Brown to B+ and Orange and Green to B-.)
    651 oz-in motor: (Wiring: Red to A+, Green to A-, Yellow to B+ and Blue to B-).

    Click the link to respond:
    My stepper motor has little to no torque on anything less than 1/4 steps.. tested on two drivers verified to be working. Can this be remedied?

  • Can you guys make a video showing how to adjust the white pin combinations on the redleaf drivers, in relation to the various combinations needed for the different size stepper motors?

    The dip switch settings on the drivers have a table on the top of the driver itself. To determine the size of the motor and driver compatibility, you first need to associate the motor to the correct driver (i.e. if the motor requires 6 amps to deliver the rated torque, you will need a driver that can allow for a 6 amp draw). Second, if the motor is rated within the amp specs of the driver, then you need to look at the motor datasheet (located on the product page of each motor) and look at the amp rating related to the wiring scheme you selected (most likely bipolar parallel). Se the dip switches to select an amp that matches this rating found in the datasheet. Remember that the dip switch is ON if UP and OFF if DOWN. On = 1 and off = 0.

    If you think a video would be more helpful, please call us and we can discuss this.

    Click the link to respond:
    Can you guys make a video showing how to adjust the white pin combinations on the redleaf drivers, in relation to the various combinations needed for the different size stepper motors?

  • Your book built stepper motors have different wiring colors than what you have in your instructions about pairing the wires. Do you have an updated version?

    Our book is a bit outdated with our current stepper motors we have for sale, however the motors recommended for our scratch build kit (same as in book) is our 425-oz motors with 8 wires (https://www.buildyourcnc.com/Documents/PN.SM60HT86-2008BF-U%20(inhouse%20PN.60BYGH303-13)%20(1).pdf) now you will join the 8 cables in pairs that will convert it to 4 wires. Wiring: Red and Blue to A+, Yellow and Black to A-, White and Brown to B+ and Orange and Green to B-.

    Click the link to respond:
    Your book built stepper motors have different wiring colors than what you have in your instructions about pairing the wires. Do you have an updated version?

  • Does the spindle accept different collet sizes, or do I need to purchase different spindles that will accept different collets?

    The 2.2kW spindle will accept up to 9/16" (a little over 1/2") end mill shanks down to very small diameters (any size that ER-20 will accept). The 1.5kW spindle has a reduced collet size and will only accept up to 5/16". The 1.5kW will accept ER-11 collets.

    Click the link to respond:
    Does the spindle accept different collet sizes, or do I need to purchase different spindles that will accept different collets?

  • I have a KL-4030 stepper motor driver that I only have about an hour use on it but seems to be bad already. Has anyone out there had the same problem?

    The KL-4030 is a Keling 3.0 amp stepper motor driver. These are generally pretty robust drivers. You mentioned in the question that it worked for one hour. This sounds like it could be a contact issue with the wiring in the terminals. I would recommend that you check all of the connections. The terminals that are used in these drivers have terminals that are easily used incorrectly.

    Make sure to open the terminal all the way using a small screw driver. Then insert the exposed wire into the opening and re-tighten the terminal. Make sure of a good connection by tugging on the wires.

    Also, check kthe digital wires that connect from the driver to the control board.

    Click the link to respond:
    I have a KL-4030 stepper motor driver that I only have about an hour use on it but seems to be bad already. Has anyone out there had the same problem?

  • I would like to know if your breakout board and driver boards are compatible with MAC OS X working with Sketch Up pro using SketchUcam ?

    SketchUcam will output gcode which standard CNC control software will typically interpret, execute and control CNC machines. So, there is no problem using SketchUcam. However, our CNC machine control software that use our CNC machine interface boards require Windows OS, of Linux. The Mach3 USB board will only run with Mach3 control software which runs under the Windows OS. The parallel breakout board can run under Windows or Linux OS and the computer must contain a parallel port.

    Click the link to respond:
    I would like to know if your breakout board and driver boards are compatible with MAC OS X working with Sketch Up pro using SketchUcam ?

  • Hi, I am thinking of making a CNC router that I can use in woodworking. I am very happy if you can help me with the necessary parts for this

    Ok, sure. Let's get the discussion started. Please respond with your questions on this FAQ

    Click the link to respond:
    Hi, I am thinking of making a CNC router that I can use in woodworking. I am very happy if you can help me with the necessary parts for this

  • will the 651 oz. stepper motor you offer require a different power supply then for the original stepper motor I perched from you a few years back? I think it was a 24 V. unit????

    Yes, the 651 oz/in motor requires a driver that is compatible to the motors (the motor will draw 6 amps max and the driver paired with this motor will be able to allow for a 6 amp draw). I would also recommend a 36 volt power supply for better high velocity performance.

    Click the link to respond:
    will the 651 oz. stepper motor you offer require a different power supply then for the original stepper motor I perched from you a few years back? I think it was a 24 V. unit????

  • Hi, i have a breakout board that requires 5vdc and i need a power supply for this. What amp rating power supply do i need to power the breakout board without frying it?

    We generally use the USB to power the interface (breakout board). The current from the computer is sufficient to supply the breakout board.

    Click the link to respond:
    Hi, i have a breakout board that requires 5vdc and i need a power supply for this. What amp rating power supply do i need to power the breakout board without frying it?

  • Do you offer or can recommend a place where I can buy the Drive Pulley for NEMA 43 Stepper Motor (1586 oz-in 3/4" single shaft) 5.5 Amps?

    We don't offer those drive pullies with a 3/4" bore at the moment. We can supply them if you are willing to wait. If so, what is the pulley pitch, how many teeth and the width of the belt.

    Additional Information:
    Meant to say pulleys, not pullies.

    Click the link to respond:
    Do you offer or can recommend a place where I can buy the Drive Pulley for NEMA 43 Stepper Motor (1586 oz-in 3/4" single shaft) 5.5 Amps?

  • My stepper motors stopped working all of a sudden. Mach 3 is running fine, just no signals getting to the motors. The lights on the motor drivers began blinking erratically when this started. Any advice where a problem like this can come from would be greatly appreciated.

    The drivers have quite a bit of protection, so you probably won't ruin anything. You motors are jumping and that is just the motors engaging from getting power from the power supply.

    There could be many reasons your motors don't turn. Consider these troubleshooting tips:

    - If you are using our parallel breakout board, make sure that the step pins are set for active low (config -> Ports and Pins -> Motor Outputs -> the steps pins should be enabled and set active low)

    - The parallel breakout board is powered (connect the USB to the computer using a USB cable)

    - In Mach3, make sure you have jog enabled (a little green button at thelower middle of the page in the program run screen).

    Additional Information:

    Click the link to respond:
    My stepper motors stopped working all of a sudden. Mach 3 is running fine, just no signals getting to the motors. The lights on the motor drivers began blinking erratically when this started. Any advice where a problem like this can come from would be greatly appreciated.

  • I have your Mach3 usb interface board and am interested in the relay board to turn plasma torch on/off. I have a different relay board that doesn't work, it needs 0/5v from output pin to trigger and the usb board doesn't put out 5 volts. Does this relay board need 5v on output or will work fine with this usb controller?

    The Mach3 USB interface board requires 24V relays externally. There are no relays on the mach3 usb board. If you use an external relay on the mach3 usb board, the relay connects to the V+ which is 24V and the output pin is the return.

    Additional Information:
    I understand what you are saying. Does your relay board work with the Mach3 USB board? If not, what relay board do you suggest to work with this usb controller?

    Additional Information:
    Our relay board works with our parallel breakout board. An off the shelf SSR (Solid State Relay) made for 24V should work fine.

    Click the link to respond:
    I have your Mach3 usb interface board and am interested in the relay board to turn plasma torch on/off. I have a different relay board that doesn't work, it needs 0/5v from output pin to trigger and the usb board doesn't put out 5 volts. Does this relay board need 5v on output or will work fine with this usb controller?

  • For a stepper motor that requires 5.5 amps, would you recommend setting the stepper driver to 5.43 or 6 amps? Better to go lower or higher?

    If your motor spec call for 5.5 amps, it is best to set the driver for the setting that matches that spec, or the next lowest value. This will allow the motor to run within its designed characteristics.

    Click the link to respond:
    For a stepper motor that requires 5.5 amps, would you recommend setting the stepper driver to 5.43 or 6 amps? Better to go lower or higher?