[ Log In ]
[ Register ]
NEW: CNC Router PLANS Available for all of our Newest CNC Models!! Click here to "Design Your CNC".

Question #: 2368

Question: when buying 1.5m of 1/2" Lead Screw per inch (Steel) does it ship as a whole rod or do i need to specify what lengths i need?

Current Solution

When buying any of our ACME screws, if the entire length or lengths is desired please send us an email or a call, to specify the actual length needed! But if no call or email is sent previous of the order then, we will give the customer a call or email to find the exact lengths that they will require.

Respond:

Other Possible Solutions to this Question

  • Hi, I need the lead screw and bearings for x/y/z axis of the CNC. What is the length of "1/2" Lead Screw per inch (Steel)"?

    Depending on the size of your CNC machine, it will vary the length required for your application.
    Please verify the CNC machine, and we can go into detail on the specific lengths or methods for the linear guide mechanics.

    We sell our ACME Screw (1/2" per inch), also our longest length of ACME Screw is 76-3/4".

    Click the link to respond:
    Hi, I need the lead screw and bearings for x/y/z axis of the CNC. What is the length of "1/2" Lead Screw per inch (Steel)"?

  • If I order 19ft of the 1/2" lead screw will it come in three 6'5" lengths by default? This is what I need. Thanks

    No they will not come in that length as a default, we would contact the buyer to ask specific lengths due to the total length purchased.

    However if you order the 1/2" lead screw we can get them cut to the specific length you require, by contacting us here or call us at 281-815-7701.

    Click the link to respond:
    If I order 19ft of the 1/2" lead screw will it come in three 6'5" lengths by default? This is what I need. Thanks

  • BUILDING ONE OF YOUR GREENBULL 6X LONG AND 2.2 KILOWATT SPINDLE DOES NOT FIT. SEEMS LEAD SCREW YOU SENT WITH KIT IS SHORT 42" LOOKS LIKE IT NEEDS TO BE 5 OR 6 INCH LONGER. THIS CORRECT? WHAT THE NEEDED LENGTH FOR UNIT?
  • Building one of your greenBull 6X Long and 2.2 kilowatt spindle does not fit. Seems lead screw you sent with kit is short 42" looks like it needs to be 5 or 6 inch longer. Is this correct? What is the needed length of lead screw for this unit?
  • How to determine lead screw length needed. My Thomson 1 1:4 rails are 60 inches long roughly for the router I’m building. I know I have to have it long enough to couple up with the stepper motor of course but does it matter if it’s a little long on the other end

    It generally does not matter if it is longer at the other end as long as the lead screw provides the desired travel for that axis. The lead screw will only need to be long enough for the travel, plus any structure and lead-nut positioning.

    For example:
    - The motor that will turn the lead screw will need to be mounted at some position (generally at one end of the axis). In many cases, this positioning will be mounted where some of the lead screw will not be used (the lead nut will not be able to moved close to the coupling of the lead screw to the motor shaft). Add some of the length of the lead screw to be inserted into the coupling.

    - If the lead screw will contain bearings at either end of the travel, that portion of the mechanical assembly will need to be considered in the lead screw length.

    - The lead-nut will need to be mounted in a position on a structural member of the part that is to move. The distance from the part of the structure that will extend closest to the motor will have some distance to the position of the lead nut. This distance will need to be added to the lead screw length.

    Add these discrepancies to the length of the lead screw and the travel length and you will have the final length.

    Click the link to respond:
    How to determine lead screw length needed. My Thomson 1 1:4 rails are 60 inches long roughly for the router I’m building. I know I have to have it long enough to couple up with the stepper motor of course but does it matter if it’s a little long on the other end

  • I have just purchased 95 in. of 1/2 in screw and I need it cut to different lengths 51" 30" 14". Can do?

    When buying any of our ACME screws, if the entire length or lengths is desired please send us an email or a call, to specify the actual length needed! But if no call or email is sent previous of the order then, we will give the customer a call or email to find the exact lengths that they will require.

    Click the link to respond:
    I have just purchased 95 in. of 1/2 in screw and I need it cut to different lengths 51" 30" 14". Can do?

  • THE LEAD SCREW IS VERY HARD TO TURN. BACKLASH BUSHING SEEMS BE TOO TIGHT AND BINDING ON SCREW. DO IT NEED LUBRICATION OR DID DAMAGE NUT WHEN INSERTING SCREW?

    Yes, you can use lubrication, like 3-in-1 oil to make it a bit easier. You will need to run it up and down to break it in.

    Additional Information:

    Click the link to respond:
    THE LEAD SCREW IS VERY HARD TO TURN. BACKLASH BUSHING SEEMS BE TOO TIGHT AND BINDING ON SCREW. DO IT NEED LUBRICATION OR DID DAMAGE NUT WHEN INSERTING SCREW?

  • I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

    There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

    This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

    Effort = Sf + (Load/(2 x pi x (R/p) x Se))

    where:
    p = pitch of the screw
    Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
    Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
    Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)
    R = radius of the lead screw


    This formula is based on the "law of the machine"

    The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

    Example:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 13 = .08 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
    Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
    Effort = 5 N + (90 N / (15.7))
    Effort = 5 N + (5.73 N)
    Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

    I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

    Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

    With a bit of algebra, the formula can be rewritten to find the load:

    Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

    Another formula that does not consider friction at all:

    Effort = (Load x p) / (2 x pi x R)

    Lets see if we get similar results:

    Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
    Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

    The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

    It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

    Example for a 10 TPI 5 start (2 turns per inch) lead screw:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 2 = .5 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
    Effort = 5 N + (90 N / (6.28 x 2 x .2))
    Effort = 5 N + (90 N / (2.512))
    Effort = 5 N + (35.83 N)
    Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

    Customer Response:
    thank you so much

    Additional Information:


    Additional Information:


    Additional Information:
    how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

    Additional Information:
    Pls


    Additional Information:
    1m 16mmdiameter ball screws calculations

    Click the link to respond:
    I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

  • I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.

    There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

    This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

    Effort = Sf + (Load/(2 x pi x (R/p) x Se))

    where:
    p = pitch of the screw
    Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
    Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
    Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)
    R = radius of the lead screw


    This formula is based on the "law of the machine"

    The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

    Example:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 13 = .08 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
    Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
    Effort = 5 N + (90 N / (15.7))
    Effort = 5 N + (5.73 N)
    Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

    I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

    Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

    With a bit of algebra, the formula can be rewritten to find the load:

    Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

    Another formula that does not consider friction at all:

    Effort = (Load x p) / (2 x pi x R)

    Lets see if we get similar results:

    Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
    Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

    The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

    It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

    Example for a 10 TPI 5 start (2 turns per inch) lead screw:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 2 = .5 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
    Effort = 5 N + (90 N / (6.28 x 2 x .2))
    Effort = 5 N + (90 N / (2.512))
    Effort = 5 N + (35.83 N)
    Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

    Customer Response:
    thank you so much

    Additional Information:


    Additional Information:


    Additional Information:
    how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

    Additional Information:
    Pls


    Additional Information:
    1m 16mmdiameter ball screws calculations

    Click the link to respond:
    I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.

  • I am asking what to set my steps per using your kit stepper motors and a 1/2"x13 lead screw with Mach3

    Here is the formula for steps/inch (steps per inch)

    Steps = how many steps for a full ration of the motor = standard motor steps x number of microsteps for each step
    Standard motor steps for our stepping motors is 200 steps per revolution.
    Microsteps are selected on the driver and are shown as full, 1/2, 1/4, 1/8, 1/16, 1/32 etc... Use the denominator for the number of microsteps per step.

    Inches = how far the travel is for one full rotation of the motor. For the 1/2" - 13 TPI (threads per inch), the travel length will be 1"/13 or .076923". So, for one revolution of the motor, the travel distance will be .076923 inches.

    So, the steps = 200 * microsteps, let's make this 1/4 just for the formula.
    The inches will be .076923. Plug those into the formula:
    Steps / inch = (200 * 4) / .076923 This can also be written as:
    200 * 4 / (1 / 13) = 10,400

    Click the link to respond:
    I am asking what to set my steps per using your kit stepper motors and a 1/2"x13 lead screw with Mach3

  • What are the toggle switch settings on the stepper motor drivers for the .5 in. lead screw 10 tpi 2 turns per inch? Thankyou!

    On the top of the stepper motor drivers is a grid with the appropriate toggle switch positions for the lead screw being used. If it is 2 turns per inch, the proper toggle switch positions would be 01101110. Try this and see if it works.

    Click the link to respond:
    What are the toggle switch settings on the stepper motor drivers for the .5 in. lead screw 10 tpi 2 turns per inch? Thankyou!

  • On the Book Build: I'm changing the 13TPI 1/2" lead screw with the 1/2" 10 TPI Acme screw with the anti backlash nut. This is for the Z axis only. What should I know about installing it and what are the numbers I need to plug into the motor tuning area.

    The settings that will have to be change will be your steps per inch in motor tuning (mach 3), or settings/axes(planetCNC). But we do not have the actual numbers/specs that will fit your 10 TPI 5 start lead screw, here is a tutorial video which explains how to get the exact numbers you need! (

    ).
    Here is a default setting that you might be able to tune and adjust accordingly: 1600 steps, accel 400.02, velocity 5.

    Click the link to respond:
    On the Book Build: I'm changing the 13TPI 1/2" lead screw with the 1/2" 10 TPI Acme screw with the anti backlash nut. This is for the Z axis only. What should I know about installing it and what are the numbers I need to plug into the motor tuning area.

  • What steppers are required for the X, Y, and Z axis of the scratch build kit? Do they all need to be the same rating?

    The required motors are the 425 oz-in stepping motors, would be the required motors to run the machine efficiently.

    Click the link to respond:
    What steppers are required for the X, Y, and Z axis of the scratch build kit? Do they all need to be the same rating?

  • hi. i need a 3/8 screw of 78 inches how much does it cost and do you have it?

    Our 3/8" lead screws are available at a maximum length of 72". A screw at that diameter is is not the best solution at long lengths for machines that will spin that axis quickly since there will be screw whipping.

    Click the link to respond:
    hi. i need a 3/8 screw of 78 inches how much does it cost and do you have it?

  • I am loking for a kit that can cut 4x8 material and would be ready to cut when assembled. plus what computer and software are needed to be ready to cut?

    The greenLean machine comes with the entire structure and features a 4'x8' cutting area. You will still need some hookup wire to connect the electronics and silicone tubing for the water to and from the spindle.

    greenLean Machine: https://buildyourcnc.com/item/cnc-machine-greenLean-v1

    Thanks for answering my last question. So I have two follow-up questions from the response. The green leaf stands vertical is it designed for the material to be cut without falling free once it is cut through? And second question: you metioned water running to the spindle is this a cooling system for the spindle?

    You would use holding tabs to keep the parts from falling out of the cut areas. Holding tabs are generated as part of the CAM file. Yes, this is the way the spindle is cooled. This is far superior to air cooling. Air cooling will blow the chips all over the shop.

    Click the link to respond:
    I am loking for a kit that can cut 4x8 material and would be ready to cut when assembled. plus what computer and software are needed to be ready to cut?

  • Does "Additional Length" for the Lead Screw mean Additional Length in inches? So for the 4' x-axis I have to choose Additional Length=52?

    When you add a specific length to your cart, the additional length will be in inches.
    So you will need to add the total length which will be 98" in total!

    If this is for the scratch build kit (book CNC) the total length (98") of lead screw you will need for this machine is the three axes added together:

    X-axis: 52"
    Y-axis: 32"
    Z-axis: 14"

    You will have to specify the dimensions you require by sending a email (with your order details) or call to: customerservice@buildyourcnc.com or 281-815-7701

    Click the link to respond:
    Does "Additional Length" for the Lead Screw mean Additional Length in inches? So for the 4' x-axis I have to choose Additional Length=52?

  • What do I need to purchase from you to get me running. I have planet cnc control board but it is difficult contacting them when I need help.

    Software specific questions for Planet-CNC will have to come from them or other sources as we are not fully equipped to troubleshoot all issues. If the issue is related to motor tuning or setup involving our electronics, then we will gladly assist you. You may contact techsupport@buildyourcnc.com with inquiries.

    Click the link to respond:
    What do I need to purchase from you to get me running. I have planet cnc control board but it is difficult contacting them when I need help.

  • I just ordered a 1/2" lead screw and bearings, etc. But I don't see any 1/2" shim washers for those bearings. If you have any, please toss 8 of them in the shipment and I'll gladly reimburse you.

    We will provide shim washers as a part of machine assemblies, but when purchasing lead screw and bearings, the shim washers must be purchased as well. Please give us a call and we can send them out.

    Click the link to respond:
    I just ordered a 1/2" lead screw and bearings, etc. But I don't see any 1/2" shim washers for those bearings. If you have any, please toss 8 of them in the shipment and I'll gladly reimburse you.

  • I ordered 96 inches of the 1/2 inch 10 tpi drive screw. I need it in 3 pieces. 53 inches, 30 inches, and 13 inches. Please let me know if that can happen. Thankyou