### Question #: 852

Question:
**
thank you for the reply. I would be really good to know the calculation. The lead screw is 1/2" diameter with 13 TPI. Please provide the calculation for determing the maximum weight motor can handle on Z-axis on book build cnc. And one more question. If I am cutting 18mm MDF with 6mm cutting bit (so 6mm pass), what can be the maximum speed rate of cutting and spindle speed of router? thank you
**

**
**

**There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.
This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.
Effort = Sf + (Load/(2 x pi x (R/p) x Se))
where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)
R = radius of the lead screw
This formula is based on the "law of the machine"
The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.
Example:
Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches
Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in
I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.
Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.
With a bit of algebra, the formula can be rewritten to find the load:
Load = (Effort - Sf) x (2 x pi x (R/p) x Se)
Another formula that does not consider friction at all:
Effort = (Load x p) / (2 x pi x R)
Lets see if we get similar results:
Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in
The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.
It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.
Example for a 10 TPI 5 start (2 turns per inch) lead screw:
Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches
Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-inCustomer Response:thank you so muchAdditional Information:Additional Information:Additional Information:how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically Additional Information:Pls
Additional Information:1m 16mmdiameter ball screws calculations**

**
**

### Other Possible Solutions to this Question

**Since I am using normal all-thread lead screw 13 TPI 1/2" for the book build cnc, what can be the maximum feed rate of machine and how can I change the mechanical setup in mach 3? I am using 1/4" steel carbile endmill with 2 flutes and router is 2 HP with variable speed**Book build (scratch build), feedrates and recommendation.

Using standard allthread will provide around 20-30 ipm using 36 volts. Although it allows for a working CNC machine, the RPM of the spindle/router will need to spin at the lowest setting to provide the beat efficiency and life for the end mill at 1/4" cut diameter and higher. The speeds may be fine for smaller end mills.

If you would like faster speeds, you should change the lead screws on the CNC machine to the 1/2" 5 start 10 TPI which translates to 2 turns per inch which means, the stepping motor will not need to turn as fast to produce faster motion. That is to say, the stepping motor will only need to turn two revolutions for the machine to travel one inch and with the allthread, the stepping motor will need to turn 13 times to reach one inch.

Link to the lead screw and other mechanical parts needed:

https://www.buildyourcnc.com/CNCMachineMechanicalParts.aspx

To change the lead screws you will need (for each axis):

1. The lead screw for that axis.

2. Two 1/2" collars to keep the lead screw axially stable.

3. One Antibacklash nut.

Additional Information:

20**If I am cutting 18mm MDF with 6mm cutting bit (so 6mm pass), what can be the maximum speed rate of cutting and spindle speed of router?**The best way to determine the cutting speed is to determine this with respect to the edge quality you desire. This recommendation generally comes from the major end mill manufacturers.

The feedrate (travel speed) should be determined by the chip load of the end mill, the number of flutes, material of the end mill (Solid Carbide, HSS - High Speed Steel, Cobalt, etc.) and the RPM of the spindle. You will need to see the manufacturer's specifications of the end mill to determine this information.

Formula:

Chip Load = (feed rate IPM)/(Spindle RPM x Number of Flutes)

or

Feed Rate IPM = Chip Load x Spindle RPM x Number of Flutes

Once you find this information, apply this to the material at the full depth of the end mill. If you find that your edge condition is aberrant, pull back on either the speed, or the depth per pass. If the edge condition is acceptable, then push the speed higher until the edge condition starts to deteriorate in quality and then pull back to the accepted level.

Using this method, you will be able to reduce the wear on the end mil which will be the most expensive consumable on the machine.

Additional Information:**Click the link to respond:**

If I am cutting 18mm MDF with 6mm cutting bit (so 6mm pass), what can be the maximum speed rate of cutting and spindle speed of router?**Hi, I’m purchasing an ox build workbee cnc router from China but I need to purchase the spindle mount, router and all cables/wires. Please can you give a list and quote of what I will need? I am purchasing the electrical pack with it but it doesn’t come with the cables and all other bits I need. Thank tou**Hola puedo venderte una maquina nueva completa chocofrutfc@yahoo.es

**I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.**There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:

p = pitch of the screw

Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)

Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.

Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

R = radius of the lead screw

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))

Effort = 5 N + (90 N / (6.28 x 12.5 x .2))

Effort = 5 N + (90 N / (15.7))

Effort = 5 N + (5.73 N)

Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)

Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))

Effort = 5 N + (90 N / (6.28 x 2 x .2))

Effort = 5 N + (90 N / (2.512))

Effort = 5 N + (35.83 N)

Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:

thank you so much

Additional Information:

Additional Information:

Additional Information:

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Additional Information:

Pls

Additional Information:

1m 16mmdiameter ball screws calculations**Click the link to respond:**

I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.**I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.**There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:

p = pitch of the screw

Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)

Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.

Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

R = radius of the lead screw

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))

Effort = 5 N + (90 N / (6.28 x 12.5 x .2))

Effort = 5 N + (90 N / (15.7))

Effort = 5 N + (5.73 N)

Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)

Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))

Effort = 5 N + (90 N / (6.28 x 2 x .2))

Effort = 5 N + (90 N / (2.512))

Effort = 5 N + (35.83 N)

Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:

thank you so much

Additional Information:

Additional Information:

Additional Information:

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Additional Information:

Pls

Additional Information:

1m 16mmdiameter ball screws calculations**Click the link to respond:**

I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.**Regarding 1/2" 5 start and 10 TPI ACME precision lead screw, what the maximum length you can ship within USA? I'm looking for something like 100" and I could use a 1" screw if available. Please include estimated price. Thanks.**The maximum length we can ship is a total of 78" inches. However we can send your required length in portions. Please refer to adding the total items you require to your cart to get a visualized amount and shipping cost.

**Click the link to respond:**

Regarding 1/2" 5 start and 10 TPI ACME precision lead screw, what the maximum length you can ship within USA? I'm looking for something like 100" and I could use a 1" screw if available. Please include estimated price. Thanks.**I am looking at purchasing the greenbull 5X system with the laser/spindle combination. Can the laser do both rastered engraving as well as vectored cutting with the same breakout board and software? If I have this wrong please let me know what would be needed to accompish this.**You can do raster and vector engraving on the greenBull laser/spindle combination. The methods of this process is not accomplished in the same way as the typical laser machines where CorelDRAW is used. The Mach3 laser plug-in can be used for the raster engraving and standard CNC g-code can be used for vector cutting and engraving.

The raster method will not be fast on the greenBull since the z-axis is heavy and there are inertial limitation on doing fast raster back and forth movement. Vector is the best use of this machine.**I received the electronics for book build cnc machine. I need to know how much weight the z-axis motor can hold since my (craftsman) router seems to be heavy. It is 2HP with variable speed**The motor is helped by the mechanical leverage of the screw. The 425 oz-in motors that are included in the standard electronics combo has very high torque for that type of machine. You will have no problem using that motor for the book machine.

We use that motor for very heavy spindles on the blackToe and blackFoot CNC Machine kits.

You will need to do the mechanical leverage calculation along with the torque of the motor to determine the actual weight it will lift. The calculation will need to consider the type and pitch of the screw and it would also consider the gravity constant of 9.8 m/s/s.

If you need me to determine this formula and work out the calculation based on the screw you are using, please let me know.

Additional Information:

thank you for the reply. I would be really good to know the calculation. The lead screw is 1/2" diameter with 13 TPI. Please provide the calculation. And one more question. If I am cutting 18mm MDF with 6mm cutting bit (so 6mm pass), what can be the maximum speed rate of cutting and spindle speed of router?

thank you**Click the link to respond:**

I received the electronics for book build cnc machine. I need to know how much weight the z-axis motor can hold since my (craftsman) router seems to be heavy. It is 2HP with variable speed**On the Book Build: I'm changing the 13TPI 1/2" lead screw with the 1/2" 10 TPI Acme screw with the anti backlash nut. This is for the Z axis only. What should I know about installing it and what are the numbers I need to plug into the motor tuning area.**The settings that will have to be change will be your steps per inch in motor tuning (mach 3), or settings/axes(planetCNC). But we do not have the actual numbers/specs that will fit your 10 TPI 5 start lead screw, here is a tutorial video which explains how to get the exact numbers you need! (

).

Here is a default setting that you might be able to tune and adjust accordingly: 1600 steps, accel 400.02, velocity 5.**What maximum weight will my motor torque be able to lift? Effort = Sf + (Load/(2 x pi x (R/p) x Se)) In this formula, is Sf (static force) include gravity? how much usually is static force? can you please give one example to calculate max. weight Z-axis can carry?**

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:

p = pitch of the screw

Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)

Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.

Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

R = radius of the lead screw

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))

Effort = 5 N + (90 N / (6.28 x 12.5 x .2))

Effort = 5 N + (90 N / (15.7))

Effort = 5 N + (5.73 N)

Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)

Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)

R = 1 inch since that is the length from the center of the shaft that the motor is rated

p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))

Effort = 5 N + (90 N / (6.28 x 2 x .2))

Effort = 5 N + (90 N / (2.512))

Effort = 5 N + (35.83 N)

Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:

thank you so much

Additional Information:

Additional Information:

Additional Information:

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Additional Information:

Pls

Additional Information:

1m 16mmdiameter ball screws calculations**I bought a 'BuildyourCNC V1' relay board to go with my mach3 usb controller. I have been sent a 'Songle' relay. It's not the one in your picture and it's got different connections, for which there isn't a wiring diagram. The one I ordered says it is 5v, this one seems to be saying it's a 24v unit. Can you please explain what has happened? Thanks**The Mach3 USB interface board requires 24V relays externally. There are no relays on the mach3 usb board. If you use an external relay on the mach3 usb board, the relay connects to the V+ which is 24V and the output pin is the return.

Additional Information:

I understand what you are saying. Does your relay board work with the Mach3 USB board? If not, what relay board do you suggest to work with this usb controller?

Additional Information:

Our relay board works with our parallel breakout board. An off the shelf SSR (Solid State Relay) made for 24V should work fine.**I bought a 'BuildyourCNC V1' relay board to go with my mach3 usb controller. I have been sent a 'Songle' relay. It's not the one in your picture and it's got different connections, for which there isn't a wiring diagram. The one I ordered says it is 5v, this one seems to be saying it's a 24v unit. Can you please explain what has happened? Thanks**The Mach3 USB interface board requires 24V relays externally. There are no relays on the mach3 usb board. If you use an external relay on the mach3 usb board, the relay connects to the V+ which is 24V and the output pin is the return.

Additional Information:

I understand what you are saying. Does your relay board work with the Mach3 USB board? If not, what relay board do you suggest to work with this usb controller?

Additional Information:

Our relay board works with our parallel breakout board. An off the shelf SSR (Solid State Relay) made for 24V should work fine.**I have a cnc router that was built from the book "Build your own cnc machine" by james kelley and patrick hood daniel.all the parts were purchased from your company.I have no clue how to work the machine and I need to purchase a spindle (or router) bits , softwear ect , I did mention I don't know how to use the machine !!! Thanks for your help Richard**That is a very loaded question that could be replied in so many ways. I will need a more specific question to help you. For instance, I have my machine moving in different directions, but I don't know how to make the machine move according to g-code instructions. Another question could be, I connected all of my electronics and the motors are not moving and I did all of the steps on the electronics video to troubleshoot the problem.

**I am making my own CNC setup using all the electronics from your website and I have many questions. Please advise how to have my computer recognize the USB connection from my breakout board also I would like to use a water cooled spindle but I need to know the parts required for a 4x10 bed area used for woods and plastics**You will need PlanetCNC software for the USB breakout board and when plugging in the USB the computer should automatically recognize the board, however you can go into device manager to see if the USB terminal is working correctly.

The parallel breakout board; the USB is not a connection terminal rather than a power source, and the parallel port will be the communication terminal.

The items you will need for a water cooled spindle would be: water pump, silicon tubing(length desired by customer), a extension cord(from a hardware store(orange))(1 same gauge wire/length as extension cord).**Building one of your greenBull 6X Long and 2.2 kilowatt spindle does not fit. Seems lead screw you sent with kit is short 42" looks like it needs to be 5 or 6 inch longer. Is this correct? What is the needed length of lead screw for this unit?**The leadscrew length for the greenBull long Z-axis is 47 inches.

**Click the link to respond:**

Building one of your greenBull 6X Long and 2.2 kilowatt spindle does not fit. Seems lead screw you sent with kit is short 42" looks like it needs to be 5 or 6 inch longer. Is this correct? What is the needed length of lead screw for this unit?**Hi, I need the lead screws and bearings for the 4' x-axis, the 2'(?) y-axis and the 1'(?) z-axis as specified in the book 'Build your own cnc'. I am not sure which to order on your website. Thanks**You can find the required components for our scratch build CNC here(https://buildyourcnc.com/cnckitintro.aspx).

Lead Screw needed will be:

X-axis: 52 Inches

Y-axis: 32 Inches

Z-axis: 14 Inches

These will be the bearings that are specified that will be needed:

Bearings 1/2" Inside Diameter - 6

Bearings 5/16" Inside Diameter - 24**Click the link to respond:**

Hi, I need the lead screws and bearings for the 4' x-axis, the 2'(?) y-axis and the 1'(?) z-axis as specified in the book 'Build your own cnc'. I am not sure which to order on your website. Thanks**Hi, I have intention of purchasing your 1/2 inch precision lead screw set to build my CNC machine, could I have the schematic dimension of your 1/2 inch anti-backlash nut, bearing for the lead screw and the shim? Also is your 2.2kW spindle able to mill Aluminum and what is the accuracy?**BYCNC response:

Milling aluminum is no problem with our machines.

Here is a video we recently did with our 4'x8' machine. The aluminum piece is about 1/4" thick: https://buildyourcnc.com/tutorials/tutorial-greenbull-aluminum-cutting

The accuracy you will see from our our 2.2kW spindle is entirely dependent on the precision of your build, so it's not possible to say what level of accuracy you can achieve without an examination of the complete system. However, our spindles have a runout of less than .0001 in, which includes the collets that we sell. If you use a collet from another manufacturer, we cannot guarantee this TIR (Total Indicated Runout) dimension.

For the dimension drawing of the anti-backlash nut, please contact us directly by phone or email to techsupport@buildyourcnc.com

User response:

I have emailed waiting for your reply.

User response:

Hi, I am still waiting for your email reply.

BYCNC response:

Your email has been sent.**BUILDING ONE OF YOUR GREENBULL 6X LONG AND 2.2 KILOWATT SPINDLE DOES NOT FIT. SEEMS LEAD SCREW YOU SENT WITH KIT IS SHORT 42" LOOKS LIKE IT NEEDS TO BE 5 OR 6 INCH LONGER. THIS CORRECT? WHAT THE NEEDED LENGTH FOR UNIT?**The leadscrew length for the greenBull long Z-axis is 47 inches.

**Click the link to respond:**

BUILDING ONE OF YOUR GREENBULL 6X LONG AND 2.2 KILOWATT SPINDLE DOES NOT FIT. SEEMS LEAD SCREW YOU SENT WITH KIT IS SHORT 42" LOOKS LIKE IT NEEDS TO BE 5 OR 6 INCH LONGER. THIS CORRECT? WHAT THE NEEDED LENGTH FOR UNIT?**I have your breakout board with relay parallel port , I have a vacuum, light on router and air pump I want to also hook up to board, can I hook those up to board and also could I had reylays to each one, what is the best way to figure this out any information would be great. Thanks**Here is how to connect your router to the parallel breakout board through the on-board relay. You will need a spare extension cord. You will need to remove a portion of the outer jacket of the extension cord to expose the white, black and green wires (white = neutral, black = live and green = ground), understanding that the neutral and live create the completed circuit.

See this image of a similar connection. The terminal has the same connections.

https://www.buildyourcnc.com/images/vacuum-pressure-controller-relay-terminals-700.JPG

Image of the relay terminal:

https://www.buildyourcnc.com/images/breakoutboardrelayNONC.PNG

The live/black wire would be cut and one end of the cut would be secured into the P terminal and the other cut end would be secured into the S terminal. The live and ground wire would be uncut and travel from the plug to the router.

Additional Information:

You can also connect other high powered devices to the breakout board using any of the output terminals. You will need to supply extra relays like the one shown here:

https://www.buildyourcnc.com/item/electronicsAndMotors-breakout-Relays-relay-board-250V-12A-5V

Or you can find SSRs (Solid State Relays) that will accept 5v to drive the relay coil. Make sure the SSR will protect the 5V line from Back EMF as there is a coil in the relay. The one we sell contains a fly-back diode to protect the 5v terminal.