[ Log In ]
[ Register ]

Question #: 873

Question: How do I determine what CAM program I should use?

Current Solution

There are several specifications related to CAM software that you will need to consider.

1. The CAM software will need to be able to offer the features that match that of the machine you select to perform the fabrication. Some of these machines include, standard 3 axis vertical CNC milling machine, turning machine, and 4 or 5 axis CNC machine.

2. The CAM software will need to contain the features that you feel are necessary for how you will apply the machine. For example, are you making signs? Are you milling parts for a machine? There is a wide array of CAM software that will work well for one application and not another.

3. The CAM software will need to work well with your workflow and processes, and have the user interface that you prefer.

Respond:

Other Possible Solutions to this Question

  • what program do I use to install ubuntu on my computer?

    Here is the direct link to download ubuntu (http://www.ubuntu.com/download/desktop), now installing it to your HDD you will need to install it to a USB or burn it to a DVD. Here is a following guide to install ubuntu (http://www.ubuntu.com/download/desktop/try-ubuntu-before-you-install).

    Additional Information:
    Ubuntu comes with a program that will replace the controller software (ex Mach 3/Planet CNC), called LinuxCNC, here is the main website (http://www.linuxcnc.org/) and the main download page(http://www.linuxcnc.org/index.php/english/download).

    Click the link to add information to this solution:
    what program do I use to install ubuntu on my computer?

  • how do I determine the steps per inch for the motors?

    blueChick:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    blackToe:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    blackFoot:

    X-axis
    “CW8060 (6.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 914.29 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    greenBull:

    X-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 914.29 steps/in

    Y-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110
    Mach3 Motor Tuning: 914.29 steps/in

    Z-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/4 Microstep
    Dipswitches: 01100100
    Mach3 Motor Tuning: 1600 steps/in


    Scratch-Build / Book-Build Kit:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 1600 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    Additional Information:


    Additional Information:
    Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

    Additional Information:

    Click the link to add information to this solution:
    how do I determine the steps per inch for the motors?

  • How do I determine what post processor I have on my shop built CNC. There are about a million to choose from on Vcarve Pro

    You will probably have post processors like the following listed:
    Mach2/3 ATC Arcs (inch)
    Mach2/3 ATC Arcs (mm)
    Mach2/3 Arcs (inch)
    Mach2/3 Arcs (mm)
    Mach2/3-WrapX2A ATC Arcs (inch)
    Mach2/3-WrapX2A ATC Arcs (mm)
    Mach2/3-WrapY2A ATC Arcs (inch)
    Mach2/3-WrapY2A ATC Arcs (mm)

    If you have an Automatic Tool Changer, use the post processor with the ATC in the name. For most applications and if you don't have an ATC (automatic tool changer), use the Mach2/3 Arcs (inch) or (mm) post processor.

    Click the link to add information to this solution:
    How do I determine what post processor I have on my shop built CNC. There are about a million to choose from on Vcarve Pro

  • [797] What power supply should I use for this relay?

    The dual 24VDC relay can use any 24V power supply that outputs 24V DC. A great power supply that will work well with this dual 24VDC relay is this power supply: https://buildyourcnc.com/item/electronicsAndMotors-power-supply-24v-1a-dc

    Click the link to add information to this solution:
    [797] What power supply should I use for this relay?

  • HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE

    There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

    This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

    Effort = Sf + (Load/(2 x pi x (R/p) x Se))

    where:
    p = pitch of the screw
    Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
    Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
    Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)
    R = radius of the lead screw


    This formula is based on the "law of the machine"

    The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

    Example:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 13 = .08 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
    Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
    Effort = 5 N + (90 N / (15.7))
    Effort = 5 N + (5.73 N)
    Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

    I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

    Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

    With a bit of algebra, the formula can be rewritten to find the load:

    Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

    Another formula that does not consider friction at all:

    Effort = (Load x p) / (2 x pi x R)

    Lets see if we get similar results:

    Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
    Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

    The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

    It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

    Example for a 10 TPI 5 start (2 turns per inch) lead screw:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 2 = .5 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
    Effort = 5 N + (90 N / (6.28 x 2 x .2))
    Effort = 5 N + (90 N / (2.512))
    Effort = 5 N + (35.83 N)
    Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

    Customer Response:
    thank you so much

    Additional Information:


    Additional Information:


    Additional Information:
    how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

    Additional Information:
    Pls


    Additional Information:
    1m 16mmdiameter ball screws calculations

    Click the link to add information to this solution:
    HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE

  • WHAT DIPSWITCH SETTINGS SHOULD I USE?

    blueChick:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    blackToe:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    blackFoot:

    X-axis
    “CW8060 (6.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 914.29 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    greenBull:

    X-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 914.29 steps/in

    Y-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110
    Mach3 Motor Tuning: 914.29 steps/in

    Z-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/4 Microstep
    Dipswitches: 01100100
    Mach3 Motor Tuning: 1600 steps/in


    Scratch-Build / Book-Build Kit:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 1600 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    Additional Information:


    Additional Information:
    Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

    Additional Information:

    Click the link to add information to this solution:
    WHAT DIPSWITCH SETTINGS SHOULD I USE?

  • [77] What circuit breaker should I use for this spindle?

    The 2.2kW spindle has a power rating of 2.2kW or 2200 watts.

    If the VFD AC voltage input is rated for 220 volts, then 2200 watts / 220 volts is 10 amps, so a 15 or 20 amp breaker will work.

    If the VFD AC voltage input is rated for 110 volts, then 2200 watts / 110 volts is 20 amps, so a 25 or 30 amp breaker will work.

    Click the link to add information to this solution:
    [77] What circuit breaker should I use for this spindle?

  • what size circuit breaker should I use with the 2.2KW VFD?

    The 2.2kW spindle has a power rating of 2.2kW or 2200 watts.

    If the VFD AC voltage input is rated for 220 volts, then 2200 watts / 220 volts is 10 amps, so a 15 or 20 amp breaker will work.

    If the VFD AC voltage input is rated for 110 volts, then 2200 watts / 110 volts is 20 amps, so a 25 or 30 amp breaker will work.

    Click the link to add information to this solution:
    what size circuit breaker should I use with the 2.2KW VFD?

  • [79] What size circuit breaker should I use for this VFD?

    The 2.2kW spindle has a power rating of 2.2kW or 2200 watts.

    If the VFD AC voltage input is rated for 220 volts, then 2200 watts / 220 volts is 10 amps, so a 15 or 20 amp breaker will work.

    If the VFD AC voltage input is rated for 110 volts, then 2200 watts / 110 volts is 20 amps, so a 25 or 30 amp breaker will work.

    Click the link to add information to this solution:
    [79] What size circuit breaker should I use for this VFD?

  • HOW DO DETERMINE THE STEPS PER INCH

    blueChick:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    blackToe:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    blackFoot:

    X-axis
    “CW8060 (6.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 914.29 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/16 Microstep, 2.7A
    Dipswitches: 11001100
    Mach3 Motor Tuning: 1422.22 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    greenBull:

    X-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 914.29 steps/in

    Y-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110
    Mach3 Motor Tuning: 914.29 steps/in

    Z-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/4 Microstep
    Dipswitches: 01100100
    Mach3 Motor Tuning: 1600 steps/in


    Scratch-Build / Book-Build Kit:

    X-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 1600 steps/in

    Y-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    Z-axis
    “CW230 (3.0A) Driver”
    Set to 1/4 Microstep, 2.7A
    Dipswitches: 10101100
    Mach3 Motor Tuning: 1600 steps/in

    Additional Information:


    Additional Information:
    Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

    Additional Information:

    Click the link to add information to this solution:
    HOW DO DETERMINE THE STEPS PER INCH

  • What wiring should I use to connect two motors for one axis?

    Yes, you can use 2 motors in the same axis output, however you will still need a driver for that motor! Also depending on the orientation on which you mount the motor you might have to invert the direction of the motor, and that will be simple by swapping the A+,A-, to the B+,B- locations and vice versa, from the driver to the motor wiring.

    Also you can run a slave motor using another axis on the board, and setting it up in the Planet-CNC settings.

    Planet-CNC/File/Settings/Axes, here you will enter 3 in the Number of Axes location, and then change the Function of the Axis 4 to Slave 1. There you will have the 4th axis or A-axis be a slave for the x-axis.
    Slave 1 - X-Axis
    Slave 2 - Y-Axis
    Slave 3 - A-Axis
    Slave 4 - B-Axis
    Etc...

    Click the link to add information to this solution:
    What wiring should I use to connect two motors for one axis?

  • [78] What size circuit breaker should I use for this spindle?

    The 2.2kW spindle has a power rating of 2.2kW or 2200 watts.

    If the VFD AC voltage input is rated for 220 volts, then 2200 watts / 220 volts is 10 amps, so a 15 or 20 amp breaker will work.

    If the VFD AC voltage input is rated for 110 volts, then 2200 watts / 110 volts is 20 amps, so a 25 or 30 amp breaker will work.

    Click the link to add information to this solution:
    [78] What size circuit breaker should I use for this spindle?

  • WHAT CABLE LENGTHS SHOULD USE FOR THE BLACKTOE

    The motor cables for the blackToe are as follows:

    Total 30 feet

    X - 9
    Y - 10
    Z - 11

    Click the link to add information to this solution:
    WHAT CABLE LENGTHS SHOULD USE FOR THE BLACKTOE

  • What kind of wire should I use between the invertor and the spindle?

    The type of wire that should be used between the spindle and the VFD (Variable Frequency Driver also called the inverter) should be of stranded type and we use between 18 and 16 AWG.

    The total current is divided among the three coil wires, therefor a wire gauge of 16 should be sufficient.

    Currently we use 20AWG 4 conductor.

    Additional Information:

    Click the link to add information to this solution:
    What kind of wire should I use between the invertor and the spindle?

  • What thermocouple or thermister should I use for the extruder hot end?

    The best choice would be a type K thermocouple.

    Click the link to add information to this solution:
    What thermocouple or thermister should I use for the extruder hot end?

  • What type of cable and gauge should I use from the vfd to the wall outlet?

    I would recommend using 14/3 power cable for the connection from the wall outlet to the VFD. The 14 is the gauge and the 3 is the number of conductors (wires) in the cable.

    Click the link to add information to this solution:
    What type of cable and gauge should I use from the vfd to the wall outlet?

  • HOW CAN I DETERMINE STEPS/INCH, VELOCITY AND ACCELERATION?

    In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

    The steps per inch is dependent on the microstepping:
    Steps/Inch for the x and y
    Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps
    Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches
    steps/inch = 3200 / 3.5 = 914.28
    This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

    Velocity:
    Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

    Acceleration:
    Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

    The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

    Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).


    X-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 914.29 steps/in
    Y-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110
    Mach3 Motor Tuning: 914.29 steps/in
    Z-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/4 Microstep
    Dipswitches: 01100100
    Mach3 Motor Tuning: 1600 steps/in

    Additional Information:


    Additional Information:


    Additional Information:
    4th axis


    Additional Information:

    Click the link to add information to this solution:
    HOW CAN I DETERMINE STEPS/INCH, VELOCITY AND ACCELERATION?

  • How can I determine steps/inch, velocity and acceleration?

    In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

    The steps per inch is dependent on the microstepping:
    Steps/Inch for the x and y
    Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps
    Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches
    steps/inch = 3200 / 3.5 = 914.28
    This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

    Velocity:
    Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

    Acceleration:
    Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

    The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

    Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).


    X-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110 (“0”=down, “1”=up)
    Mach3 Motor Tuning: 914.29 steps/in
    Y-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/16 Microstep
    Dipswitches: 01100110
    Mach3 Motor Tuning: 914.29 steps/in
    Z-axis
    “CW8060 (6.0A) Driver”
    Set to 5.43A, 1/4 Microstep
    Dipswitches: 01100100
    Mach3 Motor Tuning: 1600 steps/in

    Additional Information:


    Additional Information:


    Additional Information:
    4th axis


    Additional Information:

    Click the link to add information to this solution:
    How can I determine steps/inch, velocity and acceleration?

  • How do I program the 2.2kw VFD to jog with a Digital Input

    It is possible to connect and configure the spindle VFD to the mach3 via an RS485 communication and protocol.

    The first thing you will need is the dynamic link library to pair with mach3 called the Huanyang VFD Mach3 PlugIn. You can find this file at the mach3 support forum here: http://www.machsupport.com/forum/index.php/topic,14182.0.html

    You will also need to download the Microsoft .net 3.5 framework and install it: https://www.microsoft.com/en-us/download/details.aspx?id=21

    Follow the pdf that comes with the library file, but here is a synopsis of what you need to do (I also added a lot more information that may be useful during this process as the manual does not cover the main connections that need to be done):

    You will need to program your VFD so that it knows how to communicate with mach3 and the computer (go into the programming mode of the VFD and change these parameters):
    - PD001 - value 2 - Enables with communication aspect of the VFD
    - PD002 - value 2 - Enables frequency control from the communcations port
    - PD163 - value 1 - VFD address
    - PD164 - value 1 - Baud rate of 9600 (speed of the communication)
    - PD165 - value 3 - 8N1 RTU - 8 bits (that's the size of the word that gets communicated), N (No parity or no error checking) and 1 (1 stop bit)

    Copy the dll file to the PlugIns folder of mach3.

    Connect the RX and TX lines to your computer. There are a couple ways you can do this, but the recommended way would be to use an FTDI USB device which converts a USB to a serial com port. The device will have Rx and Tx connectors to connect to the VFD terminals with the same labels. This method is recommended since serial ports are not as common in computers these days.

    Next, you will need to configure mach3 to use the plugin library. Start mach3 and click on Menu -> config ->Config Plugins. Enable the new plugin by clicking on the red cross on the left column next to the plug in. Restart mach3 after doing this.

    No you need to configure mach3 to use the HuanyangVFD plugin. Go to the ports & pins configuration and select the spindle setup tab. Make sure that the Disable Spindle Relays checkbox is unchecked. We don't want mach3 to output a signal for a relay since the spindle will start up and turn off within the VFD and not from an external relay.

    Next, go to the HuanyangVFD settings by clicking on Menu -> plugin control -> HuanyangVFD. Set the parameters to the same settings you put into the VFD programming. The com port will be shown as new hardward when you plug in the USB FTDI device. A little bubble will be displayed at the bottom right where it will notify you that a new device is being installed (be patient while windows assigns a com port). Alternatively, you can use the windows device manager to see which port was set for the new USB FTDI device). You may need to restart mach3 several times until you get the correct information displayed in the PD001 and PD002 fields. When the com port is correct and the other parameters, like baud and VFD address is the same as you entered in the programming, then the PD001 and PD002 will show the number 2, otherwise, a 99 will appear which means that communication was not successful.

    You can now control the on/off and RPM of the spindle using the RS485 communication between mach3 and the VFD.



    Additional Information:
    This looks easy enough, however, the VFD that came with my spindle is made by Huajiang, not a Huanyang. The parameter codes are different and do not line up with the ones offered in this response.

    Click the link to add information to this solution:
    How do I program the 2.2kw VFD to jog with a Digital Input

Get Help with:
This Product
Orders
Tech Support
Sales
This Product
Order Query
Tech Support
Sales
Not logged in. Log In Register
Track Order(s)
View Order(s)
I Want to Schecule a One-On-One Paid Tech Support Session
Book an Appointment Pertaining to a BuildYourCNC Product (Free)
Ask a Quesion Below (Free):
Book an Appointment Pertaining Other Equipment ($60/half hour)
Book an Immedite Appointment Pertaining Other Equipment ($120/half hour)
Ask a Quesion Below (Free):
Waiting for response... I may not answer immediately, but I was notified on my cellular phone so my response is forthcoming. If I don't respond immediately, you can always go to the [My Account] page to see all of our chats at any time.