[ Register ]

Question #: 3475

Question: How can I determine steps/inch, velocity and acceleration?

Current Solution

In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

The steps per inch is dependent on the microstepping:
Steps/Inch for the x and y
Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps
Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches
steps/inch = 3200 / 3.5 = 914.28
This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

Velocity:
Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

Acceleration:
Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in
Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in
Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

4th axis

Respond:

Other Possible Solutions to this Question

• How can I determine steps/inch, velocity and acceleration?

In the customer service live, just enter "motor tuning" and it will give you a list of all the recommended or default settings for our machines. However the acceleration and velocity for the greenBull(other machines) will be an actual determination on your trials. You will want the highest possible acceleration and velocity without the motors stalling, so you can do increments of ten to be on the safe side, if it is too slow try increments of 25.

The steps per inch is dependent on the microstepping:
Steps/Inch for the x and y
Steps = 200 motor steps per revolution x 16 microsteps = 3200 steps
Inches = sprocket number of teeth x pitch of the sprocket = 14 x .25" = 3.5 inches
steps/inch = 3200 / 3.5 = 914.28
This is really a starting point. You will then need to use the mach3 calibration function to get the perfect steps/inch value. Use as long a measurement as possible when calibrating.

Velocity:
Start with a value of 1000 ipm. Increase this value with a relatively low acceleration at about 10. You will notice at a particular velocity that it will stall. This is your stall velocity. I would take the stall velocity and reduce it by about 30% to 50% which should give you a good final safe velocity.

Acceleration:
Once the velocity is found, raise the acceleration until it start to stall at a low velocity. Reduce the acceleration by about the same percentage to stick with a safe acceleration.

The acceleration is mostly dependent on torque (current) and the top speed is dependent on the amount of voltage.

Give some tests with all of the axes running at the same time. If you notice and stalling, reduce velocities and acceleration depending on when the stall happens (top end, or acceleration curve).

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in
Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in
Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

4th axis

How can I determine steps/inch, velocity and acceleration?

• GreenBull 5x10 X axis shutters and spins out with acceleration at 1 in StepCon, is there anything else I can check?

If your axis shutters and will not move unless moved by another force, that sounds like your acceleration is set too high. Lower the acceleration until it works well, then lower it a bit more to have a margin of safety.

Users response:
I've lowered my acceleration to 1 in the StepCon program and it still shutters when I jog it, anything else I could check?

Buildyourcnc response:
IF that didn't work, try swapping the X and Y drivers. That way you will pinpoint if the issue is the driver. If the proplem persists, then there may be an issue with the motor itself.

Buildyourcnc response:
The X and Y drivers can be easily swapped by swapping only the motor wires.

- Remove the x-axis motor wires from the X driver.
- Remove the Y motor wires from the Y driver.
- Insert the X motor wires into the Y driver.
- Insert the Y motor wires into the X driver.

Buildyourcnc response:
Now the Y-axis will move the gantry. Test the Gantry movement by moving the Y axis using the up and down arrow keys (mach3).

Users response:
Problem is now solved, I switched the X and Y at the redFly and got the same problem, so then I undid the wires going to each motor and switched them there and it I had a bad solder point in the X axis connector, thank you for the help

Buildyourcnc response:
You're very welcome. We will make sure to thoroughly check the solder points on the cable connectors prior to a redFly delivery.

GreenBull 5x10 X axis shutters and spins out with acceleration at 1 in StepCon, is there anything else I can check?

• HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE

There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:
thank you so much

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Pls

1m 16mmdiameter ball screws calculations

What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

1

HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE

• How can I determine which wires on my stepper motor bellong to A+ A- B+ or B-?

You can use a multimeter to determine the wires of the same coil (i.e A+ and A- belong to he same coil). The wires that are connected on the same coil will have relatively low resistance. A wire from one coil to another coil with have no continuity since the two coils are not touching each other.

How can I determine which wires on my stepper motor bellong to A+ A- B+ or B-?

• how do I determine the steps per inch for the motors?

blueChick:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackToe:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackFoot:

X-axis
“CW8060 (6.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

greenBull:

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in

Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

Scratch-Build / Book-Build Kit:

X-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 1600 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

L8NiICEm

-1 OR 2+427-427-1=0+0+0+1 --

-1 OR 2+145-145-1=0+0+0+1

-1' OR 2+101-101-1=0+0+0+1 --

-1' OR 2+739-739-1=0+0+0+1 or 'kXOzulhF'='

-1" OR 2+194-194-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

TO93cbNY

-1 OR 2+824-824-1=0+0+0+1 --

-1 OR 2+681-681-1=0+0+0+1

-1' OR 2+805-805-1=0+0+0+1 --

-1' OR 2+93-93-1=0+0+0+1 or 'MpFdFb3O'='

-1" OR 2+275-275-1=0+0+0+1 --

-1); waitfor delay '0:0:15' --

if(now()=sysdate(),sleep(15),0)

-1); waitfor delay '0:0:7' --

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

-1); waitfor delay '0:0:15' --

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

-1)); waitfor delay '0:0:15' --

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

1 waitfor delay '0:0:15' --

0"XOR(if(now()=sysdate(),sleep(9),0))XOR"Z

2k2XS4cL'; waitfor delay '0:0:15' --

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

g7NWXuig'); waitfor delay '0:0:15' --

-1; waitfor delay '0:0:15' --

XoN629J2')); waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-5 OR 247=(SELECT 247 FROM PG_SLEEP(15))--

-1)); waitfor delay '0:0:15' --

-5) OR 122=(SELECT 122 FROM PG_SLEEP(15))--

1 waitfor delay '0:0:15' --

-1)) OR 455=(SELECT 455 FROM PG_SLEEP(15))--

o1WPxXu4'; waitfor delay '0:0:15' --

X3pq07N4' OR 218=(SELECT 218 FROM PG_SLEEP(15))--

i2jhQp7d'); waitfor delay '0:0:15' --

xMv7x4te') OR 71=(SELECT 71 FROM PG_SLEEP(15))--

IbKvmZZx')); waitfor delay '0:0:15' --

YkhmkP9W')) OR 826=(SELECT 826 FROM PG_SLEEP(15))--

-5 OR 539=(SELECT 539 FROM PG_SLEEP(15))--

-5) OR 160=(SELECT 160 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@EQr47

-1)) OR 220=(SELECT 220 FROM PG_SLEEP(15))--

-1)) OR 266=(SELECT 266 FROM PG_SLEEP(9))--

-1)) OR 107=(SELECT 107 FROM PG_SLEEP(0))--

vL4vUHTG' OR 262=(SELECT 262 FROM PG_SLEEP(15))--

gGLXRSqE' OR 938=(SELECT 938 FROM PG_SLEEP(15))--

WT10Ii3x' OR 598=(SELECT 598 FROM PG_SLEEP(9))--

QUuBKFso') OR 152=(SELECT 152 FROM PG_SLEEP(15))--

nI56G5Pp')) OR 493=(SELECT 493 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@nxzWO

vJlQYk5k

-1 OR 2+406-406-1=0+0+0+1 --

-1 OR 2+236-236-1=0+0+0+1

-1' OR 2+914-914-1=0+0+0+1 --

-1' OR 2+282-282-1=0+0+0+1 or '9J7jHjSj'='

-1" OR 2+210-210-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(14),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(0),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-1)); waitfor delay '0:0:15' --

1 waitfor delay '0:0:15' --

RO4xZyuD'; waitfor delay '0:0:15' --

n2HpQRHN'); waitfor delay '0:0:15' --

hd4dcDEY')); waitfor delay '0:0:15' --

-5 OR 237=(SELECT 237 FROM PG_SLEEP(15))--

-5) OR 65=(SELECT 65 FROM PG_SLEEP(15))--

-1)) OR 486=(SELECT 486 FROM PG_SLEEP(15))--

-1)) OR 399=(SELECT 399 FROM PG_SLEEP(14))--

x4ZvP74B' OR 337=(SELECT 337 FROM PG_SLEEP(15))--

0VRZpjOv') OR 601=(SELECT 601 FROM PG_SLEEP(15))--

DrCdekI1')) OR 16=(SELECT 16 FROM PG_SLEEP(15))--

MQqu0z64')) OR 87=(SELECT 87 FROM PG_SLEEP(7))--

1'"

1����%2527%2522

@@HJ5oY

how do I determine the steps per inch for the motors?

• How do I determine what CAM program I should use?

There are several specifications related to CAM software that you will need to consider.

1. The CAM software will need to be able to offer the features that match that of the machine you select to perform the fabrication. Some of these machines include, standard 3 axis vertical CNC milling machine, turning machine, and 4 or 5 axis CNC machine.

2. The CAM software will need to contain the features that you feel are necessary for how you will apply the machine. For example, are you making signs? Are you milling parts for a machine? There is a wide array of CAM software that will work well for one application and not another.

3. The CAM software will need to work well with your workflow and processes, and have the user interface that you prefer.

How do I determine what CAM program I should use?

• I need to determine steps/inch mach3 setup information for my motors and drivers.

blueChick:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackToe:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackFoot:

X-axis
“CW8060 (6.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

greenBull:

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in

Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

Scratch-Build / Book-Build Kit:

X-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 1600 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

L8NiICEm

-1 OR 2+427-427-1=0+0+0+1 --

-1 OR 2+145-145-1=0+0+0+1

-1' OR 2+101-101-1=0+0+0+1 --

-1' OR 2+739-739-1=0+0+0+1 or 'kXOzulhF'='

-1" OR 2+194-194-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

TO93cbNY

-1 OR 2+824-824-1=0+0+0+1 --

-1 OR 2+681-681-1=0+0+0+1

-1' OR 2+805-805-1=0+0+0+1 --

-1' OR 2+93-93-1=0+0+0+1 or 'MpFdFb3O'='

-1" OR 2+275-275-1=0+0+0+1 --

-1); waitfor delay '0:0:15' --

if(now()=sysdate(),sleep(15),0)

-1); waitfor delay '0:0:7' --

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

-1); waitfor delay '0:0:15' --

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

-1)); waitfor delay '0:0:15' --

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

1 waitfor delay '0:0:15' --

0"XOR(if(now()=sysdate(),sleep(9),0))XOR"Z

2k2XS4cL'; waitfor delay '0:0:15' --

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

g7NWXuig'); waitfor delay '0:0:15' --

-1; waitfor delay '0:0:15' --

XoN629J2')); waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-5 OR 247=(SELECT 247 FROM PG_SLEEP(15))--

-1)); waitfor delay '0:0:15' --

-5) OR 122=(SELECT 122 FROM PG_SLEEP(15))--

1 waitfor delay '0:0:15' --

-1)) OR 455=(SELECT 455 FROM PG_SLEEP(15))--

o1WPxXu4'; waitfor delay '0:0:15' --

X3pq07N4' OR 218=(SELECT 218 FROM PG_SLEEP(15))--

i2jhQp7d'); waitfor delay '0:0:15' --

xMv7x4te') OR 71=(SELECT 71 FROM PG_SLEEP(15))--

IbKvmZZx')); waitfor delay '0:0:15' --

YkhmkP9W')) OR 826=(SELECT 826 FROM PG_SLEEP(15))--

-5 OR 539=(SELECT 539 FROM PG_SLEEP(15))--

-5) OR 160=(SELECT 160 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@EQr47

-1)) OR 220=(SELECT 220 FROM PG_SLEEP(15))--

-1)) OR 266=(SELECT 266 FROM PG_SLEEP(9))--

-1)) OR 107=(SELECT 107 FROM PG_SLEEP(0))--

vL4vUHTG' OR 262=(SELECT 262 FROM PG_SLEEP(15))--

gGLXRSqE' OR 938=(SELECT 938 FROM PG_SLEEP(15))--

WT10Ii3x' OR 598=(SELECT 598 FROM PG_SLEEP(9))--

QUuBKFso') OR 152=(SELECT 152 FROM PG_SLEEP(15))--

nI56G5Pp')) OR 493=(SELECT 493 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@nxzWO

vJlQYk5k

-1 OR 2+406-406-1=0+0+0+1 --

-1 OR 2+236-236-1=0+0+0+1

-1' OR 2+914-914-1=0+0+0+1 --

-1' OR 2+282-282-1=0+0+0+1 or '9J7jHjSj'='

-1" OR 2+210-210-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(14),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(0),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-1)); waitfor delay '0:0:15' --

1 waitfor delay '0:0:15' --

RO4xZyuD'; waitfor delay '0:0:15' --

n2HpQRHN'); waitfor delay '0:0:15' --

hd4dcDEY')); waitfor delay '0:0:15' --

-5 OR 237=(SELECT 237 FROM PG_SLEEP(15))--

-5) OR 65=(SELECT 65 FROM PG_SLEEP(15))--

-1)) OR 486=(SELECT 486 FROM PG_SLEEP(15))--

-1)) OR 399=(SELECT 399 FROM PG_SLEEP(14))--

x4ZvP74B' OR 337=(SELECT 337 FROM PG_SLEEP(15))--

0VRZpjOv') OR 601=(SELECT 601 FROM PG_SLEEP(15))--

DrCdekI1')) OR 16=(SELECT 16 FROM PG_SLEEP(15))--

MQqu0z64')) OR 87=(SELECT 87 FROM PG_SLEEP(7))--

1'"

1����%2527%2522

@@HJ5oY

I need to determine steps/inch mach3 setup information for my motors and drivers.

• HOW DO DETERMINE THE STEPS PER INCH

blueChick:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackToe:

X-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

blackFoot:

X-axis
“CW8060 (6.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/16 Microstep, 2.7A
Dipswitches: 11001100
Mach3 Motor Tuning: 1422.22 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

greenBull:

X-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110 (“0”=down, “1”=up)
Mach3 Motor Tuning: 914.29 steps/in

Y-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/16 Microstep
Dipswitches: 01100110
Mach3 Motor Tuning: 914.29 steps/in

Z-axis
“CW8060 (6.0A) Driver”
Set to 5.43A, 1/4 Microstep
Dipswitches: 01100100
Mach3 Motor Tuning: 1600 steps/in

Scratch-Build / Book-Build Kit:

X-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100 (“0”=down, “1”=up)
Mach3 Motor Tuning: 1600 steps/in

Y-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Z-axis
“CW230 (3.0A) Driver”
Set to 1/4 Microstep, 2.7A
Dipswitches: 10101100
Mach3 Motor Tuning: 1600 steps/in

Scratch built/book CNC with NEMA 34 motors and CW8060 microstep driver

L8NiICEm

-1 OR 2+427-427-1=0+0+0+1 --

-1 OR 2+145-145-1=0+0+0+1

-1' OR 2+101-101-1=0+0+0+1 --

-1' OR 2+739-739-1=0+0+0+1 or 'kXOzulhF'='

-1" OR 2+194-194-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

TO93cbNY

-1 OR 2+824-824-1=0+0+0+1 --

-1 OR 2+681-681-1=0+0+0+1

-1' OR 2+805-805-1=0+0+0+1 --

-1' OR 2+93-93-1=0+0+0+1 or 'MpFdFb3O'='

-1" OR 2+275-275-1=0+0+0+1 --

-1); waitfor delay '0:0:15' --

if(now()=sysdate(),sleep(15),0)

-1); waitfor delay '0:0:7' --

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

-1); waitfor delay '0:0:15' --

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

-1)); waitfor delay '0:0:15' --

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

1 waitfor delay '0:0:15' --

0"XOR(if(now()=sysdate(),sleep(9),0))XOR"Z

2k2XS4cL'; waitfor delay '0:0:15' --

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

g7NWXuig'); waitfor delay '0:0:15' --

-1; waitfor delay '0:0:15' --

XoN629J2')); waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-5 OR 247=(SELECT 247 FROM PG_SLEEP(15))--

-1)); waitfor delay '0:0:15' --

-5) OR 122=(SELECT 122 FROM PG_SLEEP(15))--

1 waitfor delay '0:0:15' --

-1)) OR 455=(SELECT 455 FROM PG_SLEEP(15))--

o1WPxXu4'; waitfor delay '0:0:15' --

X3pq07N4' OR 218=(SELECT 218 FROM PG_SLEEP(15))--

i2jhQp7d'); waitfor delay '0:0:15' --

xMv7x4te') OR 71=(SELECT 71 FROM PG_SLEEP(15))--

IbKvmZZx')); waitfor delay '0:0:15' --

YkhmkP9W')) OR 826=(SELECT 826 FROM PG_SLEEP(15))--

-5 OR 539=(SELECT 539 FROM PG_SLEEP(15))--

-5) OR 160=(SELECT 160 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@EQr47

-1)) OR 220=(SELECT 220 FROM PG_SLEEP(15))--

-1)) OR 266=(SELECT 266 FROM PG_SLEEP(9))--

-1)) OR 107=(SELECT 107 FROM PG_SLEEP(0))--

vL4vUHTG' OR 262=(SELECT 262 FROM PG_SLEEP(15))--

gGLXRSqE' OR 938=(SELECT 938 FROM PG_SLEEP(15))--

WT10Ii3x' OR 598=(SELECT 598 FROM PG_SLEEP(9))--

QUuBKFso') OR 152=(SELECT 152 FROM PG_SLEEP(15))--

nI56G5Pp')) OR 493=(SELECT 493 FROM PG_SLEEP(15))--

1'"

1����%2527%2522

@@nxzWO

vJlQYk5k

-1 OR 2+406-406-1=0+0+0+1 --

-1 OR 2+236-236-1=0+0+0+1

-1' OR 2+914-914-1=0+0+0+1 --

-1' OR 2+282-282-1=0+0+0+1 or '9J7jHjSj'='

-1" OR 2+210-210-1=0+0+0+1 --

if(now()=sysdate(),sleep(15),0)

0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(14),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

0"XOR(if(now()=sysdate(),sleep(0),0))XOR"Z

(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

-1; waitfor delay '0:0:15' --

-1); waitfor delay '0:0:15' --

-1)); waitfor delay '0:0:15' --

1 waitfor delay '0:0:15' --

RO4xZyuD'; waitfor delay '0:0:15' --

n2HpQRHN'); waitfor delay '0:0:15' --

hd4dcDEY')); waitfor delay '0:0:15' --

-5 OR 237=(SELECT 237 FROM PG_SLEEP(15))--

-5) OR 65=(SELECT 65 FROM PG_SLEEP(15))--

-1)) OR 486=(SELECT 486 FROM PG_SLEEP(15))--

-1)) OR 399=(SELECT 399 FROM PG_SLEEP(14))--

x4ZvP74B' OR 337=(SELECT 337 FROM PG_SLEEP(15))--

0VRZpjOv') OR 601=(SELECT 601 FROM PG_SLEEP(15))--

DrCdekI1')) OR 16=(SELECT 16 FROM PG_SLEEP(15))--

MQqu0z64')) OR 87=(SELECT 87 FROM PG_SLEEP(7))--

1'"

1����%2527%2522

@@HJ5oY

HOW DO DETERMINE THE STEPS PER INCH

• I purchased the large gantry system with USB control. I have built the CNC and it is working fine. Now fine tuning the motors. On the X-axis I have the Velocity set at 60 (inches), Acceleration at 1.4, the Step Pulse 1-5us and Dir Pulse set at 0. Do I need to adjust the pulses?

The steps per unit is automatically determined in the calibration of the axis by clicking on the "set steps per unit" button above the reset button on the settings tab. Initially set the velocity and acceleration to a low setting, like 100 and 10 respectively, so that the axis does not stall during this operation. Once calibrated, the steps per unit will be set to the correct value and the velocity and acceleration can be increased. I have a video explaning the tuning of the motors on this page:
https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach4-mach3-USB-ethernet-Board

The name of the video is Test and Tune the motors.

• How can I connect my pc to my motor drivers and motors?

All you need is a CNC controller like the following options:

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach3-USB-Board

This controller is easy to connect using standard wire screw terminals and works with the mach3 control software.

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach4-mach3-USB-ethernet-Board

This controller is a little bit more difficult to connect, but is a more feature-rich controller and will work with both mach3 and mach4 CNC control software titles.

Specifically, a CNC controller connects to the computer via a USB cable and connects to the motor drivers. These controllers also connect to the limit switches, spindle/router control, air/fluid/mist control, etc.

How can I connect my pc to my motor drivers and motors?

• I have motors and drivers, how can I control them from my pc?

All you need is a CNC controller like the following options:

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach3-USB-Board

This controller is easy to connect using standard wire screw terminals and works with the mach3 control software.

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach4-mach3-USB-ethernet-Board

This controller is a little bit more difficult to connect, but is a more feature-rich controller and will work with both mach3 and mach4 CNC control software titles.

Specifically, a CNC controller connects to the computer via a USB cable and connects to the motor drivers. These controllers also connect to the limit switches, spindle/router control, air/fluid/mist control, etc.

I have motors and drivers, how can I control them from my pc?

• HOW CAN I DETERMINE THE DOSE EQUIVALENT (MREM/HR, MREM/WK, MREM/YR) USING RAW DATA FROM A TLD (THERMOLUMINESCENT DOSIMETER) THAT WAS PLACED IN AN OFFICE FOR 22 DAYS?

Assumption 1: The "raw data" of 24 mrem on the TLD is the total dose received by the TLD during the 22 days that the TLD was deployed in your office. This means that (1) any TLD reader background signal has been properly subtracted, (2) the signal accumulating in the TLD during any transport or storage time between preparation (annealing) and deployment in your office has been properly subtracted and, (3) the signal accumulating in the TLD during any transport or storage time between removal from your office and processing (reading) has been properly subtracted.

With this assumption, the total dose rate in your office is (24 mrem)/(22 days), or 1.091 mrem per day. The reference background is given as 63 mrem per year which is (63 days)/(365.25 days per year) or 0.172 mrem per day. Thus the average net dose rate to the TLD during the 22 days was (1.091-0.172) = 0.919 mrem per day.

Assumption 2: The net dose rate of 0.919 mrem per day in your office is attributable to the accelerator or other regulated sources under the control of your institution.

Assumption 3: The office occupancy factor of 1/4 attributed in your question to NCRP Report 49 was misread from Table 4. The correct occupancy factor given in NCRP 49 for offices is 1.

Assumption 4: You take 20 business days per year off for vacation and holidays. You work in your office for the remaining 240 days per year.

Assumption 5: All of the accelerator shots occur while you are in your office.

Assumption 6: The average net dose rate of 0.919 mrem per day determined during the 22 days of measurement continues for a year.

Based on the data that you provided and my assumptions, your annual dose received in your office from the accelerator or other regulated sources at your institution is predicted to be (0.919 mrem per day) x (240 work days per year) = 220 mrem.

Tom Gesell, PhD

HOW CAN I DETERMINE THE DOSE EQUIVALENT (MREM/HR, MREM/WK, MREM/YR) USING RAW DATA FROM A TLD (THERMOLUMINESCENT DOSIMETER) THAT WAS PLACED IN AN OFFICE FOR 22 DAYS?

• I need my spindle and cnc electronics repaired. How can I fix it?

Yes, you can send your electronics to us for repair, or retrofit to work with either Mach3, Mach4 or LinuxCNC. You can send us an email at customerService@buildyourcnc.com to set up your appointment.

Some of the types of CNC electronics we will consider.

- We will work on electronics from other manufacturers as long as you are ok with the Mach3, Mach4 or LinuxCNC control software for your CNC machine or CNC router.

- We will repair or retrofit used CNC electronics.

- Some customers find that electronics are overwhelming to put together so we will finish these electronics wiring and assembly for you.

The cost for these includes labor cost for the time it takes to finish the CNC electronics repair or retrofit and for any parts that need to be replaced or added.

Here is an example of CNC electronics that we worked on for a customer:

This is the type of response that you can expect to receive after the CNC electronics are repaired or retrofitted to work under Mach3, Mach4 or LinuxCNC. You can see the entire work, which also shows the time involved. We also show what we were able to accomplish at the beginning of the video.

I need my spindle and cnc electronics repaired. How can I fix it?

• How can I control my motors and drivers from my pc?

All you need is a CNC controller like the following options:

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach3-USB-Board

This controller is easy to connect using standard wire screw terminals and works with the mach3 control software.

https://www.buildyourcnc.com/item/electronicsAndMotors-electronic-component-breakout-Mach4-mach3-USB-ethernet-Board

This controller is a little bit more difficult to connect, but is a more feature-rich controller and will work with both mach3 and mach4 CNC control software titles.

Specifically, a CNC controller connects to the computer via a USB cable and connects to the motor drivers. These controllers also connect to the limit switches, spindle/router control, air/fluid/mist control, etc.

How can I control my motors and drivers from my pc?

• I am using Windows 10 and my Shopbot PRT 4g uses Shopbot's proprietary software https://www.shopbottools.com/support/control-software. How can I determine if the 4th axis you offer will be compatible with my machine?

Generally, you’ll need to check what control software will need to be used with the CNC router. Our machines use industry standard electronics and control software that is nonproprietary so you can use just about any software out there with our machines.

Specifically, what software are you planning on using?

dear Sir,
I'm searching for the best one,I think that I have to learn more about that in order to be able to make the right decision.

If you are using a computer running Microsoft Windows, then I would recommend using Mach3 or Mach4. If you prefer Linux, then LinuxCNC is the best control software in my opinion.

• How do I determine what post processor I have on my shop built CNC. There are about a million to choose from on Vcarve Pro

You will probably have post processors like the following listed:
Mach2/3 ATC Arcs (inch)
Mach2/3 ATC Arcs (mm)
Mach2/3 Arcs (inch)
Mach2/3 Arcs (mm)
Mach2/3-WrapX2A ATC Arcs (inch)
Mach2/3-WrapX2A ATC Arcs (mm)
Mach2/3-WrapY2A ATC Arcs (inch)
Mach2/3-WrapY2A ATC Arcs (mm)

If you have an Automatic Tool Changer, use the post processor with the ATC in the name. For most applications and if you don't have an ATC (automatic tool changer), use the Mach2/3 Arcs (inch) or (mm) post processor.

How do I determine what post processor I have on my shop built CNC. There are about a million to choose from on Vcarve Pro

• WHAT CAUSES RINGING IN YOUR EAR AND HOW CAN YOU STOP IT?

Tinnitus . Learn to love it. No really you should see a doctor. Make sure. White noise will help you sleep when it gets loud.

I learned, too late, that if a sudden loud event causes tinnitus, see an audiologist IMMEDIATELY. They can do something about it if addressed within a day or so.

Wear hearing protection...always. Loud noises trigger my tinnitus, and headphones and ear plugs (when out & about or at the movies, subway, etc) help tremendously. Mine are rated 33dB.

WHAT CAUSES RINGING IN YOUR EAR AND HOW CAN YOU STOP IT?

• WHAT IS THE FORMULA TO DETERMINE STEPS PER INCH OR RESOLUTION FOR EACH AXIS?

The formula and calculation is a starting point to get into the area of steps per inch. You will then need to use the mach3 calibration utility to get the exact steps per inch.

Formula:
step per inch = (motor steps * microstepping) / (travel at one turn of the motor in inches)
if microstepping is set at 16 (1/16 on the driver) then and you are using a sprocket and chain with a pitch of .25 inches and 12 teeth on the drive sprocket
= (200 * 16) / (12 * .25)
= 3200 / 3
= 1066.666 steps per inch

For lead screw that has a travel of .5 inches at one turn like the 5 start 1/2 inch lead screw and using 4 microsteps per step (1/4):
= (200 * 4) / (.5)
= 800 / .5
= 1600 steps per inch

Remember to use the mach3 calibration wizard and double check the driver microstep setting.

SrCyFFpZ

-1 OR 2+902-902-1=0+0+0+1 --

-1 OR 2+722-722-1=0+0+0+1

-1' OR 2+275-275-1=0+0+0+1 --

-1' OR 2+345-345-1=0+0+0+1 or '6eaEcsTN'='

-1" OR 2+474-474-1=0+0+0+1 --

1'"

1����%2527%2522

@@E5bKt

1'"

WHAT IS THE FORMULA TO DETERMINE STEPS PER INCH OR RESOLUTION FOR EACH AXIS?

• I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:
thank you so much

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Pls

1m 16mmdiameter ball screws calculations

What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

1

I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

Get Help with:
This Product
Orders
Tech Support
Sales
This Product
Order Query
Tech Support
Sales