[ Register ]

### Question #: 4694

Question: Hi! can i order a 6 ft long 1/2'' Lead screw with the motor and the gears with it?

Current Solution

1/2" lead screw can be purchased in one length up to 77 inches (6 feet, 5 inches). Motors are found under the "Motion Electronics" menu, and gears can be found under "Mechanical Components".

Respond:

### Other Possible Solutions to this Question

• Hi! can i order a 6 ft long 1/2'' Lead screw?

We can supply 1/2" lead screw with a maximum continuous length of 77 inches.

Please give me a cost on a 6'x 1/2" lead screw. Thank you

no

what is the total cost for 77 inches of 1/2 inch lead screw?

Hi! can i order a 6 ft long 1/2'' Lead screw?

• I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:
thank you so much

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Pls

1m 16mmdiameter ball screws calculations

What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

1

I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

• I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.

There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:
thank you so much

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Pls

1m 16mmdiameter ball screws calculations

What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

1

I need the calculation to determine the stepper motor torque to find the load that it can withstand in horizontal position using a lead screw at 1/2" diameter with 13 TPI.

• With a 1/2 lead screw what is the optimal steps for the stepper motor driver 1/16, 1/8, 1/4 etc

We typically use a 1/4 microstepping for lead screws, but you want to determine the microstepping only after you determine what resolution you want on that axis of the machine.

The formula:
Resolution is steps per inch or steps per milimeter

I will go over this using steps/inch:
steps = motor steps x driver microstepping
inch = the amount of travel with one full stepper motor rotation

In the case of our 1/2" 5 start 10 TPI lead screw, the axis will travel .5 inches with one stepper motor rotation.

Let's use 1/4 microstepping (4 microsteps for each stepper motor step)

Therefore:
(200 steps x 4) / .5 inches =
800 steps / .5 inches =
1600 steps/inch

Now let's use 1/2 microstepping (2 mistrosteps)

(200 steps x 2) / .5 inches =
400 steps / .5 inches =
800 steps/inch

Remember that increasing microsteps, the torque is also reduced, but the smoothness from the motor is increased.

With a 1/2 lead screw what is the optimal steps for the stepper motor driver 1/16, 1/8, 1/4 etc

• I am looking for a lead screw with a 4mm lead, at least 4 starts and 36" in length, can you help me out?

I will check with some of our suppliers.

I am looking for a lead screw with a 4mm lead, at least 4 starts and 36" in length, can you help me out?

• If I order 19ft of the 1/2" lead screw will it come in three 6'5" lengths by default? This is what I need. Thanks

No they will not come in that length as a default, we would contact the buyer to ask specific lengths due to the total length purchased.

However if you order the 1/2" lead screw we can get them cut to the specific length you require, by contacting us here or call us at 281-815-7701.

If I order 19ft of the 1/2" lead screw will it come in three 6'5" lengths by default? This is what I need. Thanks

• I just changed my X and Y to the ACME 1/2" 5 start lead screw. What are the motor tuning numbers. I have the book built machine.

The settings that will have to be change will be your steps per inch in motor tuning (mach 3), or settings/axes(planetCNC). But we do not have the actual numbers/specs that will fit your 10 TPI 5 start lead screw, here is a tutorial video which explains how to get the exact numbers you need! (

)

I just changed my X and Y to the ACME 1/2" 5 start lead screw. What are the motor tuning numbers. I have the book built machine.

• How to determine lead screw length needed. My Thomson 1 1:4 rails are 60 inches long roughly for the router I’m building. I know I have to have it long enough to couple up with the stepper motor of course but does it matter if it’s a little long on the other end

It generally does not matter if it is longer at the other end as long as the lead screw provides the desired travel for that axis. The lead screw will only need to be long enough for the travel, plus any structure and lead-nut positioning.

For example:
- The motor that will turn the lead screw will need to be mounted at some position (generally at one end of the axis). In many cases, this positioning will be mounted where some of the lead screw will not be used (the lead nut will not be able to moved close to the coupling of the lead screw to the motor shaft). Add some of the length of the lead screw to be inserted into the coupling.

- If the lead screw will contain bearings at either end of the travel, that portion of the mechanical assembly will need to be considered in the lead screw length.

- The lead-nut will need to be mounted in a position on a structural member of the part that is to move. The distance from the part of the structure that will extend closest to the motor will have some distance to the position of the lead nut. This distance will need to be added to the lead screw length.

Add these discrepancies to the length of the lead screw and the travel length and you will have the final length.

• BUILDING ONE OF YOUR GREENBULL 6X LONG AND 2.2 KILOWATT SPINDLE DOES NOT FIT. SEEMS LEAD SCREW YOU SENT WITH KIT IS SHORT 42" LOOKS LIKE IT NEEDS TO BE 5 OR 6 INCH LONGER. THIS CORRECT? WHAT THE NEEDED LENGTH FOR UNIT?

The leadscrew length for the greenBull long Z-axis is 47 inches.

• HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE

There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

Effort = Sf + (Load/(2 x pi x (R/p) x Se))

where:
p = pitch of the screw
Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)

This formula is based on the "law of the machine"

The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

Example:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 13 = .08 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
Effort = 5 N + (90 N / (15.7))
Effort = 5 N + (5.73 N)
Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

With a bit of algebra, the formula can be rewritten to find the load:

Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

Another formula that does not consider friction at all:

Effort = (Load x p) / (2 x pi x R)

Lets see if we get similar results:

Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

Example for a 10 TPI 5 start (2 turns per inch) lead screw:

Load = 90 N (20.2 lbs)
R = 1 inch since that is the length from the center of the shaft that the motor is rated
p = 1 inch / 2 = .5 inches

Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
Effort = 5 N + (90 N / (6.28 x 2 x .2))
Effort = 5 N + (90 N / (2.512))
Effort = 5 N + (35.83 N)
Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

Customer Response:
thank you so much

how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

Pls

1m 16mmdiameter ball screws calculations

What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

1

HOW DO I DETERMINE THE AMOUNT OF SCREW WEIGTH THAT MY MOTOR CAN HANDLE

• If I buy the 1/2" 5 start lead screw and the 3/8" 5 start lead screws will it all work together

If the turns per inch on a lead screw is different, then the nut on the lead screw will move at a different velocity.

Let me explain in more detail.

Let's say you have two lead screws:

- 1/2" 5 starts at 10 TPI = 2 turns per inch. (5 starts / 10 TPI = 1/2 inches per turn or 10 TPI / 5 Starts = 2 turns per inch.)

- 3/8" 2 starts at 10 TPI = 5 turns per inch. (2 starts / 10 TPI = 1/5 inches per turn or 10 TPI / 2 starts = 5 turns per inch.)

So, if two stepper motors (one connected to the 1/2" lead screw and the other connected to the 3/8" lead screw) turned 10 revolutions in 2 seconds, the 1/2" lead nut would travel 5 inches and the 3/8" lead nut would travel 2 inches at the 2 second mark.

If I buy the 1/2" 5 start lead screw and the 3/8" 5 start lead screws will it all work together

• I am asking what to set my steps per using your kit stepper motors and a 1/2"x13 lead screw with Mach3

Here is the formula for steps/inch (steps per inch)

Steps = how many steps for a full ration of the motor = standard motor steps x number of microsteps for each step
Standard motor steps for our stepping motors is 200 steps per revolution.
Microsteps are selected on the driver and are shown as full, 1/2, 1/4, 1/8, 1/16, 1/32 etc... Use the denominator for the number of microsteps per step.

Inches = how far the travel is for one full rotation of the motor. For the 1/2" - 13 TPI (threads per inch), the travel length will be 1"/13 or .076923". So, for one revolution of the motor, the travel distance will be .076923 inches.

So, the steps = 200 * microsteps, let's make this 1/4 just for the formula.
The inches will be .076923. Plug those into the formula:
Steps / inch = (200 * 4) / .076923 This can also be written as:
200 * 4 / (1 / 13) = 10,400

I am asking what to set my steps per using your kit stepper motors and a 1/2"x13 lead screw with Mach3

• On the Book Build: I'm changing the 13TPI 1/2" lead screw with the 1/2" 10 TPI Acme screw with the anti backlash nut. This is for the Z axis only. What should I know about installing it and what are the numbers I need to plug into the motor tuning area.

The settings that will have to be change will be your steps per inch in motor tuning (mach 3), or settings/axes(planetCNC). But we do not have the actual numbers/specs that will fit your 10 TPI 5 start lead screw, here is a tutorial video which explains how to get the exact numbers you need! (

).
Here is a default setting that you might be able to tune and adjust accordingly: 1600 steps, accel 400.02, velocity 5.

• Building one of your greenBull 6X Long and 2.2 kilowatt spindle does not fit. Seems lead screw you sent with kit is short 42" looks like it needs to be 5 or 6 inch longer. Is this correct? What is the needed length of lead screw for this unit?

The leadscrew length for the greenBull long Z-axis is 47 inches.

• How do I keep the lead screw from moving back and forth?

The lead screw needs to be stabilized axially. The lead screw should turn, but not move any other way. The method to keep the lead screw stable is to use two bearings with ID (inside diameter) that match the diameter of the lead screw. The bearings are positioned before and after a stable structural part. A collar is positioned at one side of the bearing assembly and another collar, or end of a coupling is positioned at the other side of the bearing assembly.

How many times do you need to turn the handle to move the lead screw 1 inch?

For our 5 start 10 tpi, the lead nut will travel one inch with two turns of the lead screw.

How do I keep the lead screw from moving back and forth?

• What is the longest 1/2" Acme lead screw that I can buy?

We can supply 1/2" lead screw with a maximum continuous length of 77 inches.

Please give me a cost on a 6'x 1/2" lead screw. Thank you

no

what is the total cost for 77 inches of 1/2 inch lead screw?

What is the longest 1/2" Acme lead screw that I can buy?

• MOTOR GOING TWO DIRECTION WHEN JUST PUSH UP. IT WILL GO DOWN AND THEN GOES AGAIN UP WITH THE SAME BUTTON.

Try slowing your feedrate down and increasing spindle RPMs. End-mills will leave a poor finish if you go too fast. Make sure your cutting depth isn't too much. Maybe the endmill or cutter is blunt? Could it be the feed direction of the cutter? Some materials need to be fed in a certain direction.

MOTOR GOING TWO DIRECTION WHEN JUST PUSH UP. IT WILL GO DOWN AND THEN GOES AGAIN UP WITH THE SAME BUTTON.

• How much is a 6 ft long 1/2" Lead screw

1/2" lead screw is sold per inch. If you desire to buy a 6 foot length of lead screw, please purchase a quantity of 72 inches (equivalent to 6 feet).

How much is a 6 ft long 1/2" Lead screw

• I have a KL23H2100-30-4B motor with a KL-4030 driver and my motor stalls if I set the rapid above 180 imp.

What mechanical drive system are you using? If your mechanical drive system connected to the stepper motor causes the motor to spin too fast, then you will be reaching the torque limit of the motor under the load of your axis.

I have a KL23H2100-30-4B motor with a KL-4030 driver and my motor stalls if I set the rapid above 180 imp.

Get Help with:
This Product
Orders
Tech Support
Sales
This Product
Order Query
Tech Support
Sales