[ Log In ]
[ Register ]

Question #: 4695

Question: How much is a 6 ft long 1/2" Lead screw

Current Solution

1/2" lead screw is sold per inch. If you desire to buy a 6 foot length of lead screw, please purchase a quantity of 72 inches (equivalent to 6 feet).

Additional Information:

Respond:

Other Possible Solutions to this Question

  • how much would a 6 foot 5 start lead screw cost?

    The price of the 1/2" 5 start lead screw can be found here (units are in inches):
    https://buildyourcnc.com/item/mechanical-leadscrews-lead-screw-!5-5-starts-10-tpi

    I did not include the price for this answer since the price may change from time to time.

    For 6 feet of lead screw, the number of inches is 72, so simple multiple the price by 72.

    Additional Information:



    Additional Information:



    Additional Information:

    Click the link to add information to this solution:
    how much would a 6 foot 5 start lead screw cost?

  • Hi! can i order a 6 ft long 1/2'' Lead screw?

    We can supply 1/2" lead screw with a maximum continuous length of 77 inches.

    Additional Information:
    Please give me a cost on a 6'x 1/2" lead screw. Thank you

    Additional Information:
    no


    Additional Information:
    what is the total cost for 77 inches of 1/2 inch lead screw?


    Additional Information:
    what is the cost of 6 feet lead screw.

    Click the link to add information to this solution:
    Hi! can i order a 6 ft long 1/2'' Lead screw?

  • Hi! can i order a 6 ft long 1/2'' Lead screw with the motor and the gears with it?

    1/2" lead screw can be purchased in one length up to 77 inches (6 feet, 5 inches). Motors are found under the "Motion Electronics" menu, and gears can be found under "Mechanical Components".

    Click the link to add information to this solution:
    Hi! can i order a 6 ft long 1/2'' Lead screw with the motor and the gears with it?

  • What is the longest 1/2" Acme lead screw that I can buy?

    We can supply 1/2" lead screw with a maximum continuous length of 77 inches.

    Additional Information:
    Please give me a cost on a 6'x 1/2" lead screw. Thank you

    Additional Information:
    no


    Additional Information:
    what is the total cost for 77 inches of 1/2 inch lead screw?


    Additional Information:
    what is the cost of 6 feet lead screw.

    Click the link to add information to this solution:
    What is the longest 1/2" Acme lead screw that I can buy?

  • Can 3/8" lead screw be used instead of 1/2" on the 'BOOK' machine?

    Yes, you will only need to change the coupling that couples the motor to the 3/8" lead screw.

    Additional Information:
    Yes, you will only need to change the coupling that couples the motor to the 3/8" lead screw.

    Click the link to add information to this solution:
    Can 3/8" lead screw be used instead of 1/2" on the 'BOOK' machine?

  • If I order 19ft of the 1/2" lead screw will it come in three 6'5" lengths by default? This is what I need. Thanks

    No they will not come in that length as a default, we would contact the buyer to ask specific lengths due to the total length purchased.

    However if you order the 1/2" lead screw we can get them cut to the specific length you require, by contacting us here or call us at 281-815-7701.

    Click the link to add information to this solution:
    If I order 19ft of the 1/2" lead screw will it come in three 6'5" lengths by default? This is what I need. Thanks

  • Will the 1/2" 5 start lead screw and the 3/8" 5 start will it all work together in unison

    If the turns per inch on a lead screw is different, then the nut on the lead screw will move at a different velocity.

    Additional Information:
    Let me explain in more detail.

    Let's say you have two lead screws:

    - 1/2" 5 starts at 10 TPI = 2 turns per inch. (5 starts / 10 TPI = 1/2 inches per turn or 10 TPI / 5 Starts = 2 turns per inch.)

    - 3/8" 2 starts at 10 TPI = 5 turns per inch. (2 starts / 10 TPI = 1/5 inches per turn or 10 TPI / 2 starts = 5 turns per inch.)


    So, if two stepper motors (one connected to the 1/2" lead screw and the other connected to the 3/8" lead screw) turned 10 revolutions in 2 seconds, the 1/2" lead nut would travel 5 inches and the 3/8" lead nut would travel 2 inches at the 2 second mark.

    Click the link to add information to this solution:
    Will the 1/2" 5 start lead screw and the 3/8" 5 start will it all work together in unison

  • Will the 1/2" 5 start lead screw and the 3/8" 5 start will it all work together in unison

    If the turns per inch on a lead screw is different, then the nut on the lead screw will move at a different velocity.

    Additional Information:
    Let me explain in more detail.

    Let's say you have two lead screws:

    - 1/2" 5 starts at 10 TPI = 2 turns per inch. (5 starts / 10 TPI = 1/2 inches per turn or 10 TPI / 5 Starts = 2 turns per inch.)

    - 3/8" 2 starts at 10 TPI = 5 turns per inch. (2 starts / 10 TPI = 1/5 inches per turn or 10 TPI / 2 starts = 5 turns per inch.)


    So, if two stepper motors (one connected to the 1/2" lead screw and the other connected to the 3/8" lead screw) turned 10 revolutions in 2 seconds, the 1/2" lead nut would travel 5 inches and the 3/8" lead nut would travel 2 inches at the 2 second mark.

    Click the link to add information to this solution:
    Will the 1/2" 5 start lead screw and the 3/8" 5 start will it all work together in unison

  • If I buy the 1/2" 5 start lead screw and the 3/8" 5 start lead screws will it all work together

    If the turns per inch on a lead screw is different, then the nut on the lead screw will move at a different velocity.

    Additional Information:
    Let me explain in more detail.

    Let's say you have two lead screws:

    - 1/2" 5 starts at 10 TPI = 2 turns per inch. (5 starts / 10 TPI = 1/2 inches per turn or 10 TPI / 5 Starts = 2 turns per inch.)

    - 3/8" 2 starts at 10 TPI = 5 turns per inch. (2 starts / 10 TPI = 1/5 inches per turn or 10 TPI / 2 starts = 5 turns per inch.)


    So, if two stepper motors (one connected to the 1/2" lead screw and the other connected to the 3/8" lead screw) turned 10 revolutions in 2 seconds, the 1/2" lead nut would travel 5 inches and the 3/8" lead nut would travel 2 inches at the 2 second mark.

    Click the link to add information to this solution:
    If I buy the 1/2" 5 start lead screw and the 3/8" 5 start lead screws will it all work together

  • when buying 1.5m of 1/2" Lead Screw per inch (Steel) does it ship as a whole rod or do i need to specify what lengths i need?

    When buying any of our ACME screws, if the entire length or lengths is desired please send us an email or a call, to specify the actual length needed! But if no call or email is sent previous of the order then, we will give the customer a call or email to find the exact lengths that they will require.

    Click the link to add information to this solution:
    when buying 1.5m of 1/2" Lead Screw per inch (Steel) does it ship as a whole rod or do i need to specify what lengths i need?

  • With a 1/2 lead screw what is the optimal steps for the stepper motor driver 1/16, 1/8, 1/4 etc

    We typically use a 1/4 microstepping for lead screws, but you want to determine the microstepping only after you determine what resolution you want on that axis of the machine.

    The formula:
    Resolution is steps per inch or steps per milimeter

    I will go over this using steps/inch:
    steps = motor steps x driver microstepping
    inch = the amount of travel with one full stepper motor rotation

    In the case of our 1/2" 5 start 10 TPI lead screw, the axis will travel .5 inches with one stepper motor rotation.

    Let's use 1/4 microstepping (4 microsteps for each stepper motor step)

    Therefore:
    (200 steps x 4) / .5 inches =
    800 steps / .5 inches =
    1600 steps/inch

    Now let's use 1/2 microstepping (2 mistrosteps)

    (200 steps x 2) / .5 inches =
    400 steps / .5 inches =
    800 steps/inch

    Remember that increasing microsteps, the torque is also reduced, but the smoothness from the motor is increased.

    Click the link to add information to this solution:
    With a 1/2 lead screw what is the optimal steps for the stepper motor driver 1/16, 1/8, 1/4 etc

  • HOW MUCH MDF IS USED FOR THE BOOK MACHINE COMBO #1

    Three 24" x 48" sheets of mdf is used for the book build or the combo #1 plans and kit.

    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:
    nt9ZbSRf

    Additional Information:
    -1 OR 2+534-534-1=0+0+0+1 --

    Additional Information:
    -1 OR 2+83-83-1=0+0+0+1

    Additional Information:
    -1' OR 2+658-658-1=0+0+0+1 --

    Additional Information:
    -1' OR 2+552-552-1=0+0+0+1 or '8QfEjrbS'='

    Additional Information:
    -1" OR 2+524-524-1=0+0+0+1 --

    Additional Information:
    if(now()=sysdate(),sleep(15),0)

    Additional Information:
    0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z

    Additional Information:
    0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z

    Additional Information:
    (select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/

    Additional Information:
    -1; waitfor delay '0:0:15' --

    Additional Information:
    -1); waitfor delay '0:0:15' --

    Additional Information:
    -1)); waitfor delay '0:0:15' --

    Additional Information:
    1 waitfor delay '0:0:15' --

    Additional Information:
    MXjE3Md3'; waitfor delay '0:0:15' --

    Additional Information:
    gont9Py6'); waitfor delay '0:0:15' --

    Additional Information:
    ixm7ZgaG'); waitfor delay '0:0:15' --

    Additional Information:
    L3WX2lOf')); waitfor delay '0:0:15' --

    Additional Information:
    -5 OR 669=(SELECT 669 FROM PG_SLEEP(15))--

    Additional Information:
    -5) OR 526=(SELECT 526 FROM PG_SLEEP(15))--

    Additional Information:
    -1)) OR 99=(SELECT 99 FROM PG_SLEEP(15))--

    Additional Information:
    B3hszLzc' OR 556=(SELECT 556 FROM PG_SLEEP(15))--

    Additional Information:
    K9OJrDz1') OR 613=(SELECT 613 FROM PG_SLEEP(15))--

    Additional Information:
    73wbJn3w')) OR 247=(SELECT 247 FROM PG_SLEEP(15))--

    Additional Information:

    *DBMS_PIPE.RECEIVE_MESSAGE(CHR(99)||CHR(99)||CHR(99),15)

    Additional Information:

    '||DBMS_PIPE.RECEIVE_MESSAGE(CHR(98)||CHR(98)||CHR(98),15)||'

    Additional Information:

    '||DBMS_PIPE.RECEIVE_MESSAGE(CHR(98)||CHR(98)||CHR(98),15)||'

    Additional Information:
    1'"

    Additional Information:
    1����%2527%2522

    Additional Information:
    @@zROBD

    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:

    Click the link to add information to this solution:
    HOW MUCH MDF IS USED FOR THE BOOK MACHINE COMBO #1

  • I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

    There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

    This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

    Effort = Sf + (Load/(2 x pi x (R/p) x Se))

    where:
    p = pitch of the screw
    Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
    Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
    Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)
    R = radius of the lead screw


    This formula is based on the "law of the machine"

    The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

    Example:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 13 = .08 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
    Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
    Effort = 5 N + (90 N / (15.7))
    Effort = 5 N + (5.73 N)
    Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

    I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

    Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

    With a bit of algebra, the formula can be rewritten to find the load:

    Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

    Another formula that does not consider friction at all:

    Effort = (Load x p) / (2 x pi x R)

    Lets see if we get similar results:

    Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
    Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

    The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

    It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

    Example for a 10 TPI 5 start (2 turns per inch) lead screw:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 2 = .5 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
    Effort = 5 N + (90 N / (6.28 x 2 x .2))
    Effort = 5 N + (90 N / (2.512))
    Effort = 5 N + (35.83 N)
    Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

    Customer Response:
    thank you so much

    Additional Information:


    Additional Information:


    Additional Information:
    how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

    Additional Information:
    Pls


    Additional Information:
    1m 16mmdiameter ball screws calculations


    Additional Information:
    What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

    Additional Information:


    Additional Information:
    1

    Click the link to add information to this solution:
    I need the calculation to determine the stepper motor torque to find the load that it can lift using a lead screw at 1/2" diameter with 13 TPI.

  • HOW MUCH MOTOR CABLE DO I NEED FOR A BLACKFOOT

    The blackfoot requires a total of 50 feet of cable.

    The X axis needs 15 feet
    The Y axis needs 17 feet
    and the Z-axis needs 18 feet

    These are 20 gauge 4 conductor cable.

    Additional Information:

    Click the link to add information to this solution:
    HOW MUCH MOTOR CABLE DO I NEED FOR A BLACKFOOT

  • I just changed my X and Y to the ACME 1/2" 5 start lead screw. What are the motor tuning numbers. I have the book built machine.

    The settings that will have to be change will be your steps per inch in motor tuning (mach 3), or settings/axes(planetCNC). But we do not have the actual numbers/specs that will fit your 10 TPI 5 start lead screw, here is a tutorial video which explains how to get the exact numbers you need! (

    )

    Click the link to add information to this solution:
    I just changed my X and Y to the ACME 1/2" 5 start lead screw. What are the motor tuning numbers. I have the book built machine.

  • HOW LONG WOULD IT TAKE FOR MY TO BUILD A MACHINE?

    The length of time it will take to build a CNC machine kit is not an easy answer. There may be a wide array of circumstances that limit a persons abilities to build the cnc machine kit in an efficient timeframe; however, if you have moderate dexterity and moderately mechanically inclined, you should have no problem building one of our machines within one weekend if the project has very little downtime.

    Additional Information:

    Click the link to add information to this solution:
    HOW LONG WOULD IT TAKE FOR MY TO BUILD A MACHINE?

  • HOW MUCH MOTOR CABLE FOR THE BLACKFOOT?

    The motor cables for the blackToe are as follows:

    Total 30 feet

    X - 9
    Y - 10
    Z - 11

    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:

    Click the link to add information to this solution:
    HOW MUCH MOTOR CABLE FOR THE BLACKFOOT?

  • THE BLACKTOE REQUIRES HOW MUCH MOTOR CABLE

    The motor cables for the blackToe are as follows:

    Total 30 feet

    X - 9
    Y - 10
    Z - 11

    Additional Information:



    Additional Information:



    Additional Information:



    Additional Information:

    Click the link to add information to this solution:
    THE BLACKTOE REQUIRES HOW MUCH MOTOR CABLE

  • HOW CAN I KNOW MUCH WEIGHT MY MOTOR CARRY?

    There are two main questions that we can answer with respect to motor torque and the mechanical advantage of lead screws, 1) What torque motor do you need to lift a particular weight, or 2) What maximum weight will my motor torque be able to lift.

    This formula uses Newtons (N) as it's final unit. Use this with the included radius (R) to determine the torque. Newtons can easily be converted to lbs or ounces using online conversions.

    Effort = Sf + (Load/(2 x pi x (R/p) x Se))

    where:
    p = pitch of the screw
    Se = screw efficiency = Standard lead screw will be between 20% (.2) and 40% (.4)
    Sf = static force. This is the force that is needed to start the movement. The number may be eliminated, but it is good to use a number in the 5 N to 20 N range.
    Load = the expected load that the effort will need to carry (i.e., the router and the included axis assembly that the motor will need to lift)
    R = radius of the lead screw


    This formula is based on the "law of the machine"

    The final effort amount with its unit of newtons and R will be the torque. For example, if the effort comes to 100 N (newtons) and the R is .5 inches, then you can assume that the effort is 50 N-in since it would take twice the effort to turn form the one inch mark from the center of the shaft.

    Example:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 13 = .08 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .08) x .2))
    Effort = 5 N + (90 N / (6.28 x 12.5 x .2))
    Effort = 5 N + (90 N / (15.7))
    Effort = 5 N + (5.73 N)
    Effort = 10.7 N = 2.4 lbs = 38.4 oz-in

    I am putting the oz-in on the end because the formula considers the distance from the center of the shaft to be one inch.

    Therefore, a 425 oz-in motor would be able to lift a 20.2 lb Router with its accompanying assembly. If the assembly and router is heavier, plug in the numbers and determine the effort required.

    With a bit of algebra, the formula can be rewritten to find the load:

    Load = (Effort - Sf) x (2 x pi x (R/p) x Se)

    Another formula that does not consider friction at all:

    Effort = (Load x p) / (2 x pi x R)

    Lets see if we get similar results:

    Effort = (20 lb x .08 inches) / (2 x 3.14 x 1)
    Effort = 1.6 / 6.28 = .255 lbs = 4.08 oz-in

    The results from both formulas appear to be very small because a 13 TPI screw will have enormous mechanical advantage.

    It is evident that the first formula that does consider friction that we are loosely estimating is far more conservative than the second formula. Either way, even the most conservative formula shows that the 425 oz-in motor will handle very large weights. If you are using a lead screw with only two turns per inch, .5 inch pitch, you can determine the requirements with the first formula.

    Example for a 10 TPI 5 start (2 turns per inch) lead screw:

    Load = 90 N (20.2 lbs)
    R = 1 inch since that is the length from the center of the shaft that the motor is rated
    p = 1 inch / 2 = .5 inches

    Effort = 5 N + (90 N / (2 x 3.14 x (1 / .5) x .2))
    Effort = 5 N + (90 N / (6.28 x 2 x .2))
    Effort = 5 N + (90 N / (2.512))
    Effort = 5 N + (35.83 N)
    Effort = 40.828 N = 9.18 lbs = 146.88 oz-in

    Customer Response:
    thank you so much

    Additional Information:


    Additional Information:


    Additional Information:
    how do i calculate torque of stepper motor if lead screw coupled to motor shaft and load applied by lead screw on plate is 100 kg by vertically

    Additional Information:
    Pls


    Additional Information:
    1m 16mmdiameter ball screws calculations


    Additional Information:
    What is the max load that 2 NEMA 17 stepper motors (spaced 2 feet apart, both will be pushing up on the same gantry) can lift while using a rod with the following specifications T8 OD 8mm Pitch 2mm Lead 4mm for each motor.

    Additional Information:


    Additional Information:
    1

    Click the link to add information to this solution:
    HOW CAN I KNOW MUCH WEIGHT MY MOTOR CARRY?

Get Help with:
This Product
Orders
Tech Support
Sales
This Product
Order Query
Tech Support
Sales
Not logged in. Log In Register
Track Order(s)
View Order(s)
I Want to Schecule a One-On-One Paid Tech Support Session
Book an Appointment Pertaining to a BuildYourCNC Product (Free)
Ask a Quesion Below (Free):
Book an Appointment Pertaining Other Equipment ($60/half hour)
Book an Immedite Appointment Pertaining Other Equipment ($120/half hour)
Ask a Quesion Below (Free):
Waiting for response... I may not answer immediately, but I was notified on my cellular phone so my response is forthcoming. If I don't respond immediately, you can always go to the [My Account] page to see all of our chats at any time.